假设D3、D2、D1、D0全为1,则BS3、BS2、BS1、BS0全部与“1”端相连。根据电流定律,有:

Slides:



Advertisements
Similar presentations
自动化学院应用电子教学中心 1 第七章 数 / 模和模 / 数转换器 数字电路与 系统设计. 自动化学院应用电子教学中心 2 第七章 模 / 数和数 / 模转换器 7.1 概述 7.2 D/A 转换器 7.3 A/D 转换器.
Advertisements

第10章 模/数和数/模转换 10.1 概述 10.2 模/数与数/模转换通道的组成 10.3 模/数与数/模转换器的主要技术指标
计算机控制系统 主讲教师:路飞 山东大学网络教育学院.
第18章 模拟量和数字量的转换.
9.2 D/A转换 §9.2 D/A转换 DAC转换的基本原理: 图9.2.1 数模转换器示意图 《数字电子技术》
输入输出程序设计 输入输出的基本概念 无条件方式输入输出 查询方式输入输出 中断方式输入输出.
实验四 利用中规模芯片设计时序电路(二).
第7章 模拟量输入输出接口 西安交通大学计算机系 桂小林 2017年3月18日.
同相输入比例运算电路 执讲人;李先知 组 别: 电子电工组 丰县职教中心 制作.
微型计算机技术 教 学 指 导(七) 太原广播电视大学 郭建勇.
第四章:数字量输入输出通道 学习要点 1、光电耦合隔离器的结构原理及其隔离电路; 2、数字量输入通道中几种典型电路;
5.4 顺序脉冲发生器、 三态逻辑和微机总线接口 顺序脉冲发生器 顺序脉冲 计数型 分类 移位型.
窗户 门 讲台.
编码器和译码器. 编码器和译码器 实验目的 熟悉中规模集成电路编码器、译码器的工作原理和逻辑功能 掌握编码器、译码器的级联方法,了解编码器、译码器的应用.
数模转换与模数转换的应用 电工电子实验教学中心.
9.1 可编程并行输入/输出接口芯片8255A 9.2 可编程计数器/定时器 可编程串行输入/输出接口芯片8251A
第九章 计数器和定时器电路 第一节 概述 第二节 Intel 8253的控制字 第三节 Intel 8253的工作方式 第九章 计数器和定时器电路 第一节 概述 第二节 Intel 8253的控制字 第三节 Intel 8253的工作方式 第四节 Intel 8253在IBM PC机上的应用.
第8章 模拟接口 8.1 模拟接口概述 8.2 DAC及其接口 8.3 ADC及其接口.
微机原理与接口技术 微机原理与接口技术 朱华贵 2015年12月10日.
第三章 微机基本系统的设计 第一章 8086程序设计 第二章 MCS-51程序设计 第四章 存贮器与接口 第五章 并行接口
第7章 模/数和数/模转换电路 7.1 模/数转换电路 7.2 数/模转换电路.
一、任务描述 二、任务分析 三、相关知识 四、任务布置. 一、任务描述 二、任务分析 三、相关知识 四、任务布置.
第十章 D/A、A/D转换接口(6学时) 现代计算机接口技术  知 识 概 述  第一节 D/A转换(2学时)
第12章 模拟量和数字量的转换 12.1 D/A转换器 12.2 A/D转换器.
第10章 AT89S52单片机与DAC、 ADC的接口 1.
第8章 PCH中的常规接口.
微机原理与接口技术 微机原理与接口技术 朱华贵 2015年11月20日.
实验四 组合逻辑电路的设计与测试 一.实验目的 1.掌握组合逻辑电路的设计 方法 2.学会对组合逻辑电路的测 试方法.
时序逻辑电路实验 一、 实验目的 1.熟悉集成计数器的功能和使用方法; 2.利用集成计数器设计任意进制计数器。 二、实验原理
第二章 模拟量输出通道 本章要点 1.模拟量输出通道的结构组成与模板通用性; 2.8位D/A转换器DAC0832的原理组成及其接口电路
实验六 积分器、微分器.
CPU结构和功能.
第10章 D/A、A/D转换器及其与CPU的接口
电子技术基础模拟部分 1 绪论 2 运算放大器 3 二极管及其基本电路 4 场效应三极管及其放大电路 5 双极结型三极管及其放大电路
§5-4 数/模转换电路(DAC) 学习要点: D/A转换电路原理 倒T型电阻网络D/A.
第二章 双极型晶体三极管(BJT).
14.2 时序逻辑电路的分析 概述 时序逻辑电路是由存储电路和组合逻辑电路共同组成的,它的输出状态不仅与输入有关,还与电路的过去状态有关,即具有存储功能。 输入信号 输出信号 输出方程 驱动方程 描述时序逻辑电路的三个方程 状态方程 存储电路的输入信号 时序逻辑电路构成框图 存储电路的输出信号.
微机原理与接口技术 微机原理与接口技术 朱华贵 2015年11月19日.
移相正弦信号发生器设计 采用直接数字综合器DDS发生器的设计 原理:图1是此电路模型图
8.4 ADC0809接口电路及程序设计.
第四章 MCS-51定时器/计数器 一、定时器结构 1.定时器结构框图
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
第 8 章 数模和模数转换器 概 述 D/A 转换器 A/D 转换器 本章小结.
集成运算放大器 CF101 CF702 CF709 CF741 CF748 CF324 CF358 OP07 CF3130 CF347
8.3 A/D转换器及接口技术 A/D转换器概述 在大规模集成电路高速发展的今天,由于计算机控制技术在工程领域内的广泛应用,A/D转换器在应用系统中占据着重要的地位。为了满足各种不同的检测及控制任务的需要,大量结构不同,性能各异的A/D转换电路应运而生。尽管A/D转换器的种类繁多,但目前广泛使用的还是逐次比较式和双积分式。
可编程定时计数器.
本章的重点: 本章的难点: 第九章 数模和模数转换 1.D/A转换器的基本工作原理(包括双极性输出),输入与输出关系的定量计算;
计算机组成原理 课程设计.
(Random Access Memory)
微机原理与接口技术 微机原理与接口技术 朱华贵 2015年11月13日.
第二章 补充知识 2.1 总线和三态门 一、总线(BUS) 三总线结构 数据总线DB(Data Bus)
内容简介 8.1 概述 8.2 数/模转换电路(DAC) 8.3 模/数转换电路(ADC) 第8章 数/摸转换和模/数转换 重点:
微机原理与接口技术 微机原理与接口技术 朱华贵 2015年12月17日.
组合逻辑电路 ——中规模组合逻辑集成电路.
实验三 16位算术逻辑运算实验 不带进位控制的算术运算 置AR=1: 设置开关CN 1 不带进位 0 带进位运算;
实验二 带进位控制8位算术逻辑运算实验 带进位控制8位算术逻辑运算: ① 带进位运算 ② 保存运算后产生进位
《数字电子技术基础》(第五版)教学课件 清华大学 阎石 王红
实验五 MSI组合逻辑功 能部件的应用与测试
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
汽车单片机应用技术 学习情景1: 汽车空调系统的单片机控制 主讲:向楠.
单片机应用技术 (C语言版) 第10章 单片机测控接口
信号发生电路 -非正弦波发生电路.
电工电子技术实验 电工电子教学部.
上节复习(11.7) 1、定时/计数器的基本原理? 2、定时/计数器的结构组成? 3、定时/计数器的控制关系?
第12章 555定时器及其应用 一. 555定时器的结构及工作原理 1. 分压器:由三个等值电阻构成
工业机器人入门使用教程 ESTUN机器人 主讲人:李老师
第 10 章 运算放大器 10.1 运算放大器简单介绍 10.2 放大电路中的负反馈 10.3 运算放大器在信号运算方面的应用
汽车单片机应用技术 学习情景1: 汽车发动机系统的单片机控制 主讲:向楠.
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
《微型计算机原理与接口技术》 第4版 王良 宁德师范学院 吴宁 乔亚男 编著 清华大学出版社 出版
Presentation transcript:

假设D3、D2、D1、D0全为1,则BS3、BS2、BS1、BS0全部与“1”端相连。根据电流定律,有: 由于开关 BS3 ~ BS0 的状态是受要转换的二进制数 D3、D2、D1、D0 控制的,并不一定全是“1”。因因此,可以得到通式:

对于 n 位 D/A 转换器,它的输出电压VOUT与输入二进制数B( Dn-1~ D0) 的关系式可写成: 考虑到放大器反相端为虚地,故: 选取 Rfb = R ,可以得到: 对于 n 位 D/A 转换器,它的输出电压VOUT与输入二进制数B( Dn-1~ D0) 的关系式可写成: 结论:由上述推导可见,输出电压除了与输入的二进制数有关,还与运算放大器的反馈电阻 Rfb以及基准电压VREF有关。

- + 3 A 2 1 R S N I V G 负载 (外接) 外接地 T U O (a) 经典的前置放大器

138 为3 线-8 线译码器 138 为3 线-8 线译码器,共有 54/74S138和 54/74LS138 两种线路结构型式,其主要电特性的典型值如下:       当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。      利用 G1、/(G2A)和/(G2B)可级联扩展成 24 线译码器;若外接一个反相器还可级联扩展成 32 线译码器。

接口程序如下: MOV BX,BUFF ;置采样数据区首址 MOV CX,08H ;8路输入 START: OUT PA,AL ;启动A/D转换 REOC: IN AL,PB ;读EOC RCR AL,01 ;判断EOC JNC REOC ;若EOC=0,继续查询 IN AL,PA ;若EOC=1,读A/D转换数 MOV [BX],AL ;存A/D转换数 INC BX ;存A/D转换数地址加1 INC PA ;接口地址加1 LOOP START ;循环

设8路D/A转换的8个输出数据存放在内存数据段BUF0~BUF7单元中,主过程已装填DS, 8 片DAC0832的通道口地址为38H~3FH,分别存放在从CH0开始的8个连续单元中,该D/A转换模板的接口子程序: DOUT PROC NEAR MOV CX,8 MOV BX,OFFSET BUF0 NEXT: MOV AL,[BX] OUT CH0,AL INC CH0 INC BX LOOP NEXT RET DOUT ENDP

DAC0832性能 一个8位D/A转换器 电流输出方式 稳定时间为1μs 采用20脚双立直插式封装

DAC0832的原理框图及引脚如图4-3所示。DAC0832主要由8位输入寄存器、8位DAC寄存器、8位D/A转换器以及输入控制电路四部分组成。8 位输入寄存器用于存放主机送来的数字量,使输入数字量得到缓冲和锁存,由LE1加以控制;8位DAC寄存器用于存放待转换的数字量,由加LE2以控制;8位D/A转换器输出与数字量成正比的模拟电流;由与门、非与门组成的输入控制电路来控制2个寄存器的选通或锁存状态。

DAC0832管脚功能 DI0~DI7:数据输入线,其中DI0为最低有效位LSB ,DI7为 最高有效位MSB。 CS:片选信号,输入线,低电平有效。 WR1:写信号1,输入线,低电平有效。 ILE:输入允许锁存信号,输入线,高电平有效 当ILE、和CS,WR1同时有效时,8位输入寄存器端为高电平"1",此时寄存器的输出端Q跟随输入端D的电平变化;反之,当端为低电平"0"时,原D 端输入数据被锁存于Q端,在此期间D端电平的变化不影响Q端。

XFER(Transfer Control Signal):传送控制信号,输入线, 低电平有效。 IOUT1:DAC电流输出端1,一般作为运算放大器差动输入信号之一。 IOUT2:DAC电流输出端2,一般作为运算放大器另一个差动输入信号。 Rfb:固化在芯片内的反馈电阻连接端,用于连接运算放大器的输出端。 VREF:基准电压源端,输入线,10 VDC~ 10 VDC。 VCC:工作电压源端,输入线,5 VDC ~ 15 VDC。

当WR2和XFER同时有效时,8位DAC寄存器端为高电平“1”,此时DAC寄存器的输出端Q跟随输入端D也就是输入寄存器Q端的电平变化;反之,当端为低电平“0”时,第一级8位输入寄存器Q端的状态则锁存到第二级8位DAC寄存器中,以便第三级8位DAC转换器进行D/A转换。 一般情况下为了简化接口电路,可以把和直接接地,使第二级8位DAC寄存器的输入端到输出端直通,只有第一级8位输入寄存器置成可选通、可锁存的单缓冲输入方式。 特殊情况下可采用双缓冲输入方式,即把两个寄存器都分别接成受控方式。

12位DAC1210芯片 DAC1210工作原理 DAC1210内部有三个寄存器: 一个8位输入寄存器,用于存放12位数字量中的高8位DI11~DI4;一个4位输入寄存器,用于存放12位数字量中的低4位DI3 ~DI0; 一个12位DAC寄存器,存放上述两个输入寄存器送来的12位数字量; 12位D/A转换器用于完成12位数字量的转换。 由与门、非与门组成的输入控制电路来控制3个寄存器的选通或锁存状态。其中引脚(片选信号、低电平有效)、(写信号、低电平有效)和BYTE1/(字节控制信号)的组合, 用来控制 8 位输入寄存器和 4 位输入寄存器。

当CS、WR1为低电平“0”,BYTE1/为高电平“1”时,与门的输出LE1、LE2为“1”,选通 8 位和 4 位两个输入寄存器,将要转换的12位数据全部送入寄存器;当BYTE1/为低电平“0”时,LE1为“0”,8位输入寄存器锁存刚传送的 8 位数据,而LE2仍为“1”,4 位输入寄存器仍为选通,新的低 4 位数据将刷新刚传送的 4 位数据。因此,在与计算机接口电路中,计算机必须先送高 8 位后送低 4 位。XFER(传送控制信号、低电平有效)和WR2(写信号、低电平有效)用来控制 12 位DAC寄存器,当XFER和WR2同为低电平“0”时,与门输出LE3为“1”,12 位数据全部送入DAC寄存器,当XFER和WR2有一个为高电平“1”时,与门输出LE3即为“0”,则12位DAC寄存器锁存住数据使12位D/A转换器开始数摸转换。

4.2.1 DAC0832接口电路

由于DAC0832内部有输入寄存器,所以它的数据总线可直接与主机的数据总线相连,图4-5为DAC0832与PC总线的单缓冲接口电路,它是由DAC0832转换芯片、运算放大器以及74LS138译码器和门电路构成的的地址译码电路组成。图中,0832内的DAC寄存器控制端的和直接接地,使DAC寄存器的输入到输出始终直通;而输入寄存器的控制端分别受地址译码信号与输入输出指令控制,即PC的地址线A9~A0经138译码器和门电路产生接口地址信号作为DAC0832的片选信号,输入输出写信号作为DAC0832的写信号。

D/A转换接口程序: MOV DX,220H //口地址如220H送入DX MOV AL,[DATA] //被转换的数据如DATA送入累加器AL OUT DX,AL //送入D/A转换器进行转换

DAC1210接口电路

图2-6是12位D/A转换器DAC1210与PC总线的一种接口电路,它是由DAC1210转换芯片、运算放大器以及地址译码电路组成。与8位DAC0832接口电路不同的是,除了数据总线D7~D0与DAC1210高8位DI11 ~ DI4直接相连,D3~D0还要与DAC1210低4位DI3~DI0复用,因而控制电路也略为复杂。 图中,CS、WR1和BYTE1/组合,用来依次控制8位输入寄存器(LE1)和4位输入寄存器(LE2)的选通与锁存,XFER和WR2用来控制DAC寄存器(LE3)的选通与锁存,LOW与WR1、WR2连接,用来在执行输出指令时获得低电平有效,译码器的两条输出线Y0、Y2分别连到CS和XFER,一条地址线A0连到BYTE1/BYTE2,从而形成三个口地址:低4位输入寄存器为380H,高8位输入寄存器为381H,12位DAC寄存器为384H。

在软件设计中,为了实现8位数据线D0~D7传送12位被转换数,主机须分两次传送被转换数。首先将被转换数的高8位传给8位输入寄存器DI11~DI4,再将低4位传给4位输入寄存器DI3~DI0,然后再打开DAC寄存器,把12 位数据送到12位D /A转换器去转换。当输出指令执行完后,DAC寄存器又自动处于锁存状态以保持数模转换的输出不变。设12位被转换数的高8位存放在DATA单元中,低4位存放在DATA+1单元中。

转换程序 DAC: MOV DX,0381H MOV AL,[DATA] OUT DX,AL ;送高8位数据 DEC DX

普通运放V/I变换电路 0~10 mA的输出 + - V in 0~10 A T 1 2 I f s R 3 4 5 6 L 图4-9为0~10 V/0~10 mA的变换电路,由运放A和三极管T1、T2组成,R1 和 R2是输入电阻,Rf 是反馈电阻,RL是负载的等效电阻。输入电压Vin 经输入电阻进入运算放大器A,放大后进入三极管T1、T2。由于T2射极接有反馈电阻R f,得到反馈电压Vf加至输入端,形成运放A的差动输入信号。该变换电路由于具有较强的电流反馈,所以有较好的恒流性能。

输入电压 Vin 和输出电流 Io 之间关系如下: 若 R3、R4>>Rf、RL,可以认为 Io 全部流经 Rf,由此可得: V-= Vin·R4/(R1+R4)+Io·RL·R1 /(R1+R4) V+= Io(Rf+RL)·R2 /(R2+R3) 对于运放,有V- ≈ V+,则 Vin·R4/(R1+R4)+Io·RL·R1 /(R1+R4)= Io(Rf+RL)·R2 /(R2+R3) 若取R1 = R2 ,R3 = R4,则由上式整理可得 Io = Vin·R3 /(R1·Rf ) 可以看出,输出电流 Io 和输人电压 Vin 呈线性对应的单值函数关系。 R3 /(R1·Rf)为一常教,与其他参数无关。 若取Vin= 0~10 V,R1 = R2 = 100 kΩ,R3 = R4 =20 kΩ,Rf = 200 Ω,则输出电流Io = 0 ~10 mA。

逐位逼近式A/D转换原理 一个n位A/D转换器是由n位寄存器、n位D/A转换器、运算比较器、控制逻辑电路、输出锁存器等五部分组成。现以4位A/D转换器把模拟量9转换为二进制数1001为例,说明逐位逼近式A/D转换器的工作原理。如图3-10所示。

图3-10 逐位逼近式A/D转换原理图

当启动信号作用后,时钟信号在控制逻辑作用下, 首先使寄存器的最高位D3  1,其余为0, 此数字量1000经D/A转换器转换成模拟电压即VO  8,送到比较器输入端与被转换的模拟量VIN = 9进行比较,控制逻辑根据比较器的输出进行判断。当VIN  VO,则保留D3 = 1; 再对下一位D2进行比较,同样先使D2  1,与上一位D3位一起即1100进入D/A转换器,转换为VO  12再进入比较器,与VIN  9比较,因VIN  VO,则使D2  0; 再下一位D1位也是如此,D1  1即1010,经D/A转换为VO = 10,再与VIN  9比较,因VIN  VO,则使D1  0; 最后一位D0  1-即1001经D/A转换为VO  9,再与VIN  9比较,因VIN  VO,保留D0  1。比较完毕,寄存器中的数字量1001即为模拟量9的转换结果,存在输出锁存器中等待输出。

一个 n 位A/D转换器的模数转换表达式是 (3-4) 式中 n —— n位A/D转换器; VR+、VR- ——基准电压源的正、负输入; VIN——要转换的输入模拟量; B——转换后的输出数字量。 即当基准电压源确定之后,n位A/D转换器的输出数字量B与要转换的输入模拟量VIN呈正比。

2.双积分式A/D转换原理

双积分A/D转换原理 1电路构成:开关 基准电源 积分器 比较器 控制逻辑电路 时钟计数器 A 按下开关Vin 对C充电 正向积分 B 充电时间到,开关接基准电源(与Vin极性相反)反向放电,反向计分 C 放点完毕 输出信号 计数值 反应输入电压

电压/频率式A/D转换原理 电荷平衡转换法 积分器 电压比较器 单稳态定时器 当A1输出电压为0时,A2 起作用,输出跳变,暂态时间为T,C被反向充电,充电电流为IR-Vi /Ri,电压上升;当定时T1时间结束,定时器恢复稳态,使开关S断开,反向充电停止。 开关S断开后,正输入电压Vi开始对电容C正向充电,当Vo=0时,比较器A2输出再次跳变,又使单稳态定时器产生T1时间的定时脉冲而控制开关S再次闭合,A1再次反向充电,同时Vfo端又输出高电平。如此反复下去。