这是一个数字的 乐园 这里埋藏着丰富的 宝藏 请跟我一起走进数学的 殿堂
6.1.1有序数对
找朋友 问题⑴: 在班里老师有一个好朋友,你知道是谁吗? 提示一: 只给一个数据“第2列”,你能确定老师的好朋友是谁吗? 问题⑴: 在班里老师有一个好朋友,你知道是谁吗? 提示一: 只给一个数据“第2列”,你能确定老师的好朋友是谁吗? 提示二: 给出两个数据“第2列,第3排”,你能确定是谁了吗? 问题(2): 你认为确定一个位置需要几个数据?
找朋友 (2,3) 第2列 约定:列数在前,排数在后 (列数,排数) 第3排 讲台 2 1 3 4 5 6 7 8 (2,3) 约定:列数在前,排数在后 (列数,排数) 第3排 这种由两个数如(2,3)组成的表示某一具体位置的,我们就称之为数对.
数对 比 一 看看哪一组能最快找出以下位置的同学. 列数在前 排数在后 (1,3) (3,1) (2,4) (4,2) (3,4) 温馨提示 数对 (1,3) (3,1) (2,4) (4,2) (3,4) (4,3) (5,7) (7,5)
数对 有序 两个数 a与 b 组成的数对叫做有序数对。 记做:( a,b )
慧眼识英雄 × √ × × √ 这是某班几个同学写出来的几个有序数对,谁写对了? A (5、9) B (x,y) C 4,6 D (a b) 这是某班几个同学写出来的几个有序数对,谁写对了? A (5、9) × √ B (x,y) × C 4,6 × D (a b) √ E (b,9)
游戏: 走亲戚 规则: 老师点到谁的名字,表示老师想去他家作客,为了表示欢迎,这位同学要马上站起来并大声说出代表他的座位的有序数对。我们约定“列数在前,排数在后”。如XXX:“我家是(2,3),欢迎光临!”
写出学校里各个地点表示的有序数对. 考考你 (3,7) (6,8) (9,6) (8,5) (3,3) (7,4) (2,2) (5,2) 1 2 3 4 5 6 7 ● (3,7) 实验楼 (6,8) 运动场 ● ● (9,6) 食堂 考考你 ● (8,5) 宿舍楼 ● (3,3) 办公楼 (7,4) 教学楼 ● (5,2) 宣传橱窗 大门 (2,2) ● ● 1 2 3 4 5 6 7 8 9 10
谁是棋手 如图是中国象棋一次对局时的部分示意图,若”帅”所在的位置用有序数对(5,1)表示, (1)请你用有序数对表示其它棋子的位置。 (2)我们知道马行“日”字,图中的“马”下一步可以走到的位置有几个?分别如何表示? 5 (2,4) (6,5) (3,4) 4 1 (1,4) (8,3) (4,3) 谁是棋手 3 2 (2,2) (5,1) (4,1) 1 1 2 4 6 7 8 9 3 5
你能举出生活中用有序数对表示位置的例子吗? 议一议 你能举出生活中用有序数对表示位置的例子吗?
如图,甲地表示2街与5巷的十字路口,乙地表示5街与2巷的十字路口,如果用(2,5)表示甲地的位置,那么“(2,5)→(3,5) →(4,5) →(5,5) →(5,4) →(5,3) →(5,2)”表示从甲地到乙地的一种路线,请您用有序数对写出另1种从甲地到乙地的路线。 1巷 2巷 3巷 4巷 5巷 6巷 1街 2街 3街 4街 5街 6街 甲 乙 (2,5) (3,5) (4,5) (5,5) (5,4) (5,3) (5,2) 你是最棒的
小结 这节课你有什么收获? 有何体会和疑问?
认真思考哦! 布置作业: 1、课本49页:习题6.1第1题 2、备选题
数学是在混沌中发现有序 感谢指导!