中国科学院物理研究所  通用实验技术公共课程

Slides:



Advertisements
Similar presentations
非凡视野见证非凡成就 — 从 Web of Science 看兰州大学的科研产出和影响力 刘煜 博士 中国区总裁,科技与医疗信息集团 汤森路透 2010 年 11 月.
Advertisements

计量管理制度 2017年2月26日星期日2017年2月26日星期日 制作部门: 质量管理部 培训讲师: 王 美 蓉
磁性物理 1 固体磁性基础.
國際金融市場 (International Financial Markets)
快递业务员职业技能鉴定 考前培训(初级处理) 主讲:闫爱华
組員: 許惠琴.李青益.陳泰坪.黃琬婷.葉至翰 指導老師:池福灶
2010年PCT最新情况介绍 俞志龙 PCT法律司法律事务处 法律官员.
我国法定计量单位及 常见使用错误 陈 浩 元 (北京师范大学学报(自然科学版)编辑部,100875,北京)
Coffee 咖啡 09级食品营养与检验教育2班 郭明慧.
1、以《规定》为指南; 2、以《大纲》为准绳; 3、以 教材 为依据; 4、以 解读 为引领; 5、以 自学 为原则;
科研院所计量管理务实 范天泉 /3/5.
華人競爭力新指標 香港中文大學專業進修學院 長宏專案顧問公司 東吳大學推廣部締結PMP合作培訓儀式
建筑设备工程 主编:王付全 主讲:王洪义.
您心目中的瑞士 Copyright © Osec All rights reserved.
发展生产、满足消费
12 東協經貿概論 授課教師:____________ 兩岸暨東協經貿商務(附:人才認證檢定1000題庫 )‧ CNEEA 主編 前程文化.
一 单位制 1984年2月27日,我国国务院颁布实行以国际单位制(SI)为基础的法定单位制. 国际单位制规定了七个基本单位. 力学的
基于WCPT认证标准下的模块式课程模式在康复治疗学中的应用
中油国际工程有限责任公司 工作汇报
中国科学院物理研究所  通用实验技术公共课程
WTO反傾銷議題談判進展概論 鍾從定 國立雲林科技大學企管系  .
中國證券市場的未來發展和挑戰 張仁良 香港城市大學 經濟及金融系 金融學講座教授 2002年12月
第九章 电 声 器 件 四川航天职业技术学院 主讲教师 涂代国.
第一章 流体流动 基本要求: 了解流体流动的基本规律,要求熟练掌握流体静力学基本方程、连续性方程、柏努利方程的内容及应用,并在此基础上解决流体输送的管路计算问题。 1、  掌握的内容 (1) 流体的密度和粘度的定义、单位、影响因素及数据的求取; (2) 压强的定义、表示法及单位换算; (3)流体静力学基本方程、连续性方程、柏努利方程的内容及应用;
溃疡性结肠炎 (Ulcerative Colitis )
第1,2课时 教学要求 教学内容 教学难点 教学重点 课后作业.
科技出版物应正确执行GB/T —2011 陈 浩 元 《北京师范大学学报(自然科学版)》编辑部, ,
許孩子一個健康的未來 臺北縣政府子宮頸癌疫苗接種 家長說明會
粉尘爆炸事故的预防 国务院苏州昆山市中荣公司“8•2”特别重大爆炸事故调查组技术专家
職場健康促進與教育 陳俊傑 中山醫學大學附設醫院職業醫學科主治醫師 中山醫學大學醫學系公共衛生科助理教授 中華民國環境職業醫學會秘書長
第六章 社会主义初级阶段理论 新疆医科大学人文社科部“毛泽东思想和 中国特色社会主义理论体系概论”教研室.
Worker Representation in the European Union (欧盟的工人代表)
理士(LEOCH)数据中心能源领域解决方案
从数铁轨的男孩到帆船运动员 —— 从一个业内外行的视角看产险精算师的发展定位
我国法定计量单位及 常见使用错误 陈 浩 元 (北京师范大学学报(自然科学版)编辑部,100875,北京)
第五单元 磁粉探伤.
我國高等教育發展的幾項思考 呂木琳 九十五年六月十四日.
群邑媒體相關資訊The M-Flash 2009/11/ /11/30.
奔萨州 投资介绍.
中華民國核能學會第31屆第1次會員大會 生活面對的風險
Since 1972 公 司 簡 報 中華民國 九十四年十二月 Global Longwell Green Longwell.
捷安特&僑光科大 校外實習說明會 蘇聖雄 捷安特經營本部
安规培训-安规简介 Barry Sun 2006-NOV-25.
气液固性质.
2018/11/30 企业专利信息管理系统设计
Victimless Crimes 無受害者的犯罪
2011年PCT最新情况介绍 2011年6月15日 俞志龙 PCT法律司法律事务处法律官员.
Bulgaria: Facts and Figures Area: 110,993 sq. km Population: 7,364,570 Borders: Romania Black Sea Greece and Turkey Serbia and Macedonia Capital:
陳進祥 朱弘仁 陳曦照 譯 Irwin 原著 滄海書局 出版
Training for leaders 領袖學
非洲佔全世界的人口比例 % % % *人口的謊言?
第1章 全球化.
第 1 章 緒論.
世界新格局下的 中国企业国际化经营实践
适用于创业计划/投资合作/公司介绍/企业宣传
2010年上海世博會 上海世博会门票的价格体系为:平日普通票价格为160元人民币;指定日普通票价格为200元人民币;指定日优惠票价格为120元人民币,平日优惠票价格为100元人民币;夜票价格为90元人民币;3次票和7次票价格分别为400元和900元人民币,单次参观价格为平日普通票价格的8折左右 2010年5月1日至10月31日.
第3章 测量误差基本知识.
淡江大學 Tamkang University
準確性(Accuracy) 誤差種類 儀器準確度 時間因素 儀器參數.
发挥品牌引领作用 ——标准化在行动 中国标准化研究院 康键 第十四届中国标准化论坛
普通物理 施明智 阮俊人 教科書: University Physics 11th Edition By Young & Freedman.
New Zealand Papua New Guinea
第一節 物理學與其他 科技的關係 第二節 物理量的測量 與單位.
荷邮宝 寄小包到欧洲就用荷邮宝.
海膽養殖可行性研究與規劃.
上銀科技股份有限公司 2010年 法人說明會 報告人: 蔡惠卿 總經理 2010年4月27日 1.
* 07/16/96 食品工程原理 郭春锋 2019/7/29 *
LexisNexis系列产品介绍 郑辰光 Reco Zheng 产品顾问 Application Consultant
面向科研管理与决策部门的图书馆学科与咨询服务
长度和时间的测量.
Presentation transcript:

中国科学院物理研究所  通用实验技术公共课程 2017年3月3日星期五 中国科学院物理研究所  通用实验技术公共课程 《磁性测量》 第一讲:磁性测量的基础 赵同云 磁学国家重点实验室 2017年3月3日

声 明 本讲稿中引用的图、表、数据全部取自公开发表的书籍、文献、论文,而且仅为教学使用,任何人不得将其用于商业目的。

目 录 磁性物理 电磁学单位制 磁路(退磁效应及其影响) 镜像效应及其影响 误差分析与测量不确定度的评定 样品的磁中性化和安装 标准的使用

电磁学单位制 几个故事 (计量单位漫谈) 没有单位,就 不可能 比较量值 电磁学单位制 几个故事 (计量单位漫谈) 没有单位,就 不可能 比较量值

单位和单位制的意义 1、习惯 2、约定 3、制度 4、科学 路程:步行大约5分钟 / 约500米 光在真空中于1/299 792 458秒的时间间隔内所经过的距离 3、制度 “一法度衡石丈尺,车同轨,书同文。” 《史记·秦始皇本纪》 4、科学 合理性、逻辑性(自洽)、实用性、方便性(简单)

故事:计量单位 权势人物 古典阶段:身体 英寸 inch (in=2.54 cm)(荷兰语中inch 为大拇指) 10世纪:英王埃德加大拇指的第一个指节的长度。 14世纪:爱德华二世:三个大麦粒的总长度。 英尺 foot(ft=12 inch=0.3048 m) 9世纪:英国查理曼大帝的脚板的长度。 16世纪:德国:16个人的左脚板的平均长度。 码 yard(yd=3 ft=91.44 cm) 12世纪:英国亨利一世的鼻尖到前伸手臂时中指尖的距离。 丈 = 古代成年男子的身高,大丈夫。 尺 = ……

故事:计量单位 量子(自然)基准(标准): 现代阶段:量子 迄今为止,国际上已正式确立的量子基准有: 时间单位-秒基准: 微波段铯原子钟:Cs-133原子基态的两个超精细能级之间跃迁所 对应的辐射的9 192 631 770个周期的持续时间。 光频原子喷泉:激光冷却与原子囚禁 长度单位-米基准:光在真空中1/299 792 458 s的时间间隔内所经过的距离。 电压单位-伏特基准: Josephson常数:KJ=483 597.9 (1  0.4  10-6) GHz/V 电阻单位-欧姆基准: von Klitzing常数: RK=25 812.807 (1  0.2  10-6) 

小事故:计量单位 英国gallon与美国gallon: U.K. gallon = 4.546 09 L U.S. gallon = 3.785 41 L Boeing 757-300 43 400 L = 9 547 gallon (U.K.) = 11 466 gallon (U.S.A.) litre, liter (US) metre, meter (US) gram, gramme (UK)

1999年9月23日:1998年12月美国发射的火星气候探测器与地面失去联系。 大事故:计量单位 美国火星气候探测器(1998年): 1999年9月23日:1998年12月美国发射的火星气候探测器与地面失去联系。 火星大气层的最小安全距离:约85 公里~100 公里,预定140 公里~150 公里 实际上,探测器距火星表面最近仅57 公里。 探测器有可能在火星的大气中被“火葬”, 甚至坠毁在火星表面上 低级错误 1999年9月30日的调查报告: 造成飞行高度太低的原因竟然是公制和英制的转换问题。 洛克希德·马丁公司:公制单位(牛·秒) 美国航宇局(NASA)喷推实验室:英制单位(磅·秒)? 这样计算出的冲量值只是实际所需值的22%。 推力器校定表的作用是把遥测到的推力器点火工作次数转换成提供给探测器的冲量,以消除因推力器点火工作造成的弹道计算中的剩余误差。

以1832年C. F. Gauss引入绝对单位(力学单位)为分界 电磁学单位制的历史 相对 单位 电压、电量、电容、电流 磁场强度、磁感应强度、磁通 无统一单位制 以1832年C. F. Gauss引入绝对单位(力学单位)为分界 绝对 单位 高斯-韦伯绝对单位:mm-mg-s Ohmad单位制 B. A. 单位制 麦克斯韦“象限制” CGS单位制 MKS单位制 MKSA单位制 SI单位制 实用单位制

电磁学单位制的历史 MKSA单位制的采用 SI单位制(新的国际单位制)的建立 1950年7月IEC大会采用Heaviside的有理化单位制,引入Ampere作为第四个基本单位(电流),即MKSA单位制。 SI单位制(新的国际单位制)的建立 1954年第十届国际计量大会 (CGPM)采用有理化单位制;1960年10月的第十一届CGPM ,引入Kelvin(热力学温度)和candela(发光强度);1971年引入Mole(物质的量),至此新的国际单位制全部建立起来,为了与1893年的第一个国际单位制相区别,用SI来表示现在的国际单位制。

参考读物 《计量测试技术手册》第7卷 《电磁学》 《计量测试技术手册》编辑委员会, 中国计量出版社,1996年12月 《电磁学发展史(修订版)》 宋德生、李国栋著, 广西人民出版社, 1996年12月

电磁学单位制的现状 统一采用SI单位制 谁在使用非SI单位制? 电磁学的SI单位制与MKSA单位制一致。 Many U.S. teachers think the answer is “Liberia(利比里亚) and Burma(缅甸)” (make that Myanmar(缅甸)). Let's give Liberia and Myanmar a break! All countries have adopted the metric system, including the U.S., and most countries (but not the U.S.) have taken steps to eliminate most uses of traditional measurements. However, in nearly all countries people still use traditional units sometimes, at least in colloquial expressions. Becoming metric is not a one-time event that has either happened or not. It is a process that happens over time. Every country is somewhere in this process of going metric, some much further along than others.

计量在中国 1986年以前:“行政计量” 1986年-:“法制计量” 1987年-:产品质量检验机构的“计量认证” 1998年-:引入“实验室认可”机制 目前:计量认证/审查认可、实验室认可并行 原则 适用 考核标准 实验室 考核内容 计量认证 法律 中国 专用 “强制” /自愿 仪器、环境、人员、管理制度,等 实验室认可 互认 国际 ISO/IEC 17025

国家法定计量单位 legal unit of measurement 由国家法律承认、具有法定地位的计量单位。 《中华人民共和国计量法》第一章第三条: “国家采用国际单位制。 国际单位制计量单位和国家选定的其他计量单位, 为国家法定计量单位。”

国家法定计量单位 44/20 SI基本单位:7个 SI辅助单位:2个 具有专门名称的SI导出单位:19个 国家选定的非SI单位:16个

国际单位制(SI)的维持机构 The international system of units, SI, Le Système International d’Unités Meter Convention,国际米制公约(La Convention du Mètre) 1875年5月20日共有17个国家在巴黎签署的国际公约(Treaty),成立BIPM和CGPM,并由CIPM来组织和管理BIPM和CGPM。至2004年1月有51个缔约国和16个准会员。(中国1977年5月9日宣布,6月16日确认。) BIPM,国际计量局,总部位于法国巴黎郊区Sèvres的Pavillon de Breteuil。 The International Bureau of Weights and Measures (Bureau International des Poids et Mesures ) 。 CGPM,国际计量大会,每四年召开一次,为国际计量最高权力机构。 the General Conference on Weights and Measures (Conférence Générale des Poids et Mesures ) 。 CIPM,国际计量委员会,是CGPM的常设执行结构。 the International Committee for Weights and Measures (Comité International des Poids et Mesures ) 。

CGPM会员与准会员(2004年1月29日) Members (51) Associates of the CGPM (16) Argentina Greece Poland Australia Hungary Portugal Austria India Romania Belgium Indonesia Russian Federation Brazil Iran, Islamic Republic of Serbia and Montenegro Bulgaria Ireland Singapore Cameroon Israel Slovakia Canada Italy South Africa Chile Japan Spain China Korea, Dem. People's Rep. of Sweden Czech Republic Korea, Republic of Switzerland Denmark Malaysia Thailand Dominican Republic Mexico Turkey Egypt Netherlands United Kingdom Finland New Zealand United States France Norway Uruguay Germany Pakistan Venezuela Associates of the CGPM (16) Belarus Jamaica Philippines Chinese Taipei Kenya Slovenia Costa Rica Latvia Ukraine Cuba Lithuania Viet Nam Ecuador Malta Hong Kong (China) Panama

国际单位制(SI):基本单位 国际单位制(SI):辅助单位 7 个 基 本 量 7个 长度 质量 时间 热力学温度 电流 物质的量 发光强度 名称 米 千克 秒 开尔文 安培 摩尔 坎德拉 符号 m kg s K A mol cd 基本单位的定义:米、千克、秒、安培、开尔文、摩尔、坎德拉 国际单位制(SI):辅助单位 2个 量的名称 SI 导出单位 名称 符号 用SI基本单位和SI导出单位表示 [平面]角 弧度 rad 1 rad=1 m/m=1 立体角 球面度 sr 1 sr=1 m2/m2=1

国际单位制(SI):具有专门名称的SI导出单位 前10个,共19个 量的名称 SI 导出单位 名称 符号 用SI基本单位和SI导出单位表示 频率 赫兹 Hz 1 Hz=1 s1 力 牛顿 N 1 N=1 kgms2 压力、压强、应力 帕斯卡 Pa 1 Pa=1 Nm2 能量、功、热量 焦耳 J 1 J=1 Nm 功率、辐射能通量 瓦特 W 1 W=1 Js1 电荷量 库伦 C 1 C=1 As 电压、电动势、电位 伏特 V 1 V=1 WA1 电容 法拉 F 1 F=1 CV1 电阻 欧姆  1 =1 VA1 电导 西门子 S 1 S=1 1

国际单位制(SI):具有专门名称的SI导出单位 后9个,共19个 (续前表) 量的名称 SI 导出单位 名称 符号 用SI基本单位和SI导出单位表示 磁通量 韦伯 Wb 1 Wb=1 Vs 磁通量密度、磁感应强度 特斯拉 T 1 T=1 Wbm2 电感 亨利 H 1 H=1 WbA1 摄氏温度 摄氏度 C 1 C=1 K 光通量 流明 lm 1 lm=1 cdsr 光照度 勒克斯 lx 1 lx=1 lmm2 放射性活度 贝可勒尔 Bq 1 Bq=1 s1 吸收剂量 戈瑞 Gy 1 Gy=1 Jkg1 剂量当量 希沃特 Sv 1 Sv=1 Jkg1

国家选定的其它计量单位 16个 量的名称 单位名称 单位符号 换算关系和说明 时间 分 小时 天(日) min h d 1 min =60 s 1 h=60 min =3600 s 1 d=24 h=1440 min=86400 s 平面角 角秒 角分 度    1= /648000 rad(为圆周率) 1=60= /10800 rad 1=60= /180 rad 旋转速度 转每分 r/min 1 r/min=(1/60) s1 长度 海里 n mile 1 n mile=1852 m 只用于航行 速度 节 kn 1 kn = 1 n mile/h 质量 吨 原子质量单位 t u 1 t=103 kg 1 u1.6605401027 kg 体积 升 L,l 1 L=1 dm3=103 m3 能 电子伏 eV 1 eV1.6021771019 J 级差 分贝 dB 线密度 特克斯 tex 1 tex=1 g/km 面积 公顷 hm2 1 hm2=10000 m2(国际符号为ha)

单位的写法与读法 单位的读法:单位符号的中文读法 中华人民共和国国家标准:GB 3100系列 GB 3100:国际单位制及其应用 Guó Biāo 单位的读法:单位符号的中文读法 1、依据单位符号的顺序, “ • ”:不读;“ / ”:每 2、指数名称在前 单位1 • 单位2 / 单位3 • 单位4 3、面积:平方 体积:立方 不读 每 不读 质量热容: J/(kg•K) J/kg/K 焦耳每千克开尔文

量的符号:必须用斜体,下标用正体,物理量符号作下标用斜体 单位的写法与读法 单位的写法:单位符号、单位名称 中文符号:即单位名称的简称。只在有必要时用于中、小学教材和普通书刊中。除了C外,必须用中文。 中文符号不得与单位符号混用,km/小时 1、单位符号一律用正体:除了来源于人名的单位符号首字母要大写外,其余均为小写。 2、单位符号在全部数值之后,与数值间留适当的空隙,例外:角度单位的符号与数值间不留空隙,30,15',20''。 量的符号:必须用斜体,下标用正体,物理量符号作下标用斜体 作业:量、量的符号;单位、单位名称、单位符号

规范化 纳米微电子学 ? 毫微米 ? mm ? nm ? 50C 摄氏50度 ? 50 C 50 摄氏度 ? 10 ~ 30 nm ?10 nm ~ 30 nm ? (10 ~ 30) nm ? 23,500.674,25 ? 23 500.674 25 ? 修约区间:0.1,1.25=? 1.35=? 1.251=?1.349=? 作业题:数的修约规则

电磁学计量单位的确定 基本单位  电荷Coulomb定律 磁荷Coulomb定律 Biot-Savart定律 2107 N 有理化:k1=k2=k3=4 c0:m/s;=1;0=4107 H/m

电磁学的各种单位制 首先确定导出c0的基本单位;其次确定选取0、0、中哪一个作为独立量;最后确定k1、k2、k3。以保证公式的系数简化。 单位制 基本单位 独立量 k1、k2、k3 0 0  CGS静电单位 cm g s 0、 1 CGS电磁单位 0、 高斯单位 0、0 c0 实用单位 107 m 1011 g s MKS 非有理化 m kg s 107 有理化 4 4107

如何确定磁学单位 磁学单位是导出单位 由磁学量的定义方程式来确定。 磁矩 m: 磁感应强度 B: 磁通: 磁场强度 H: 磁化强度 M: 磁化率 : 磁导率 :

常用电磁学单位 量别 物理量 量的符号 SI单位 换算系数 CGS单位 力学量 长度 l 1 m = 102 cm 质量 m 1 kg 103 g 时间 t 1 s 1 s 力 F 1 N 105 dyn 功率 P 1 W 107 erg/s 功[能] W 1 J erg 磁学量 磁矩 moment 1 Am2 emu 磁场强度 H 1 A/m 410-3 Oe 磁化强度 M 10-3 G 磁通量  1 Wb 108 Mx 磁通密度 B 1 T 104 磁极化强度 J 104/ 4 emu (G) 自感、互感 L、M 1 H 109 磁导率  1 H/m 107/ 4 磁化率  107/ (4)2 磁能积 BH 1 T·A/m 1 MJ/m3 40  GOe MGOe

常用磁学单位的定义 磁通单位:韦[伯](Wb) 韦伯是只有一匝的环形线圈中的磁通量,它在 1 秒时间间隔内均匀地降到零时,环路内所感应产生的电动势为 1 伏[特]: 1 Wb 1 V 0 Wb 0 s 1 s 1 亨[利]的电感、通以 1 安[培]电流,电感中的磁通量为 1 韦[伯]。

常用磁学单位的定义 磁通密度、磁感应强度单位:特[斯拉](T) 1 平方米面积内,垂直均匀通过 1 韦[伯]磁通量的磁通密度等于 1 特[斯拉]: 在真空、均匀磁场中,通过电流为 1 安[培]、长度为 1 米的直导线,所受到的力最大为 1 牛[顿]时,磁通密度为 1 特[斯拉]。

Bohr磁子B:927.400 968(20)1026 J  T1(2010 CODATA) 常用磁学单位的定义 磁矩单位:安[培]平方米(Am2) 置于磁场中的电流回路所受到的转矩 T 等于回路的磁矩 m 与磁通密度 B 的矢量积: 截面积为 1 平方米的电流回路,通过电流为 1 安培时的磁矩。 Bohr磁子B:927.400 968(20)1026 J  T1(2010 CODATA)

常用磁学单位:磁能积BH 磁能积 BH: B的单位:1 T(esla)=1 kg · s-2 ·A-1 H的单位:A · m-1 BH的单位:1 T · A · m-1=1 m-1 · kg · s-2 能量的单位:1 J(oule)=1 m2 · kg · s-2 能量密度的单位:1 J · m-3 =1 m-1 · kg · s-2 因此, BH的单位为,1 T · A · m-1=1 J · m-3 1 T · kA · m-1=1 kJ · m-3 1 J · m3 =40 GOe

Avogadro常数NA:6.022 141 29(27)  1023 mol1(2010 CODATA) 比磁化强度:单位质量的磁矩 单位:A · m2/kg mole比磁化强度:A · m2/mol 每分子磁矩:A · m2/formula ? 1 A · m2 =103 emu 1 A · m2/kg =1 emu/g 样品质量 mole质量 mole数: 分子数:mole数NA Avogadro常数NA:6.022 141 29(27)  1023 mol1(2010 CODATA)

看文献:三个Gs ? SI A/m T=Wb/m2 4107 H/m 4104 103/4 104 103 Gs1 Oe Gauss ?

看文献:三个Gs 量值和单位

看文献:三个Gs

样品磁矩(emu) 样品密度(g/cm3) 看文献:三个Gs emu  emu/g ( = Am2/kg)  Gs  4Gs  T(esla) ? 4JGauss 4MGauss BGauss 样品磁矩(emu) 样品密度(g/cm3)  4 样品质量(g) 104 JGauss、MGauss BSI

常用磁学单位:磁化率 磁化率 :磁化强度M与磁场强度H的关系 SI的单位:1(无量纲) 直流磁化率 起始磁化率 最大磁化率 交流磁化率 微分磁化率 Gauss单位制中的磁化率Gauss G/Oe? emu/(g  Oe)

如何确定电学单位 电学单位与力学单位的关系 导 出 顺 序 绝对单位制:三个基本量 MKSA单位制:四个基本量 s m kg A N kgms2  kgm2s3A2 J Nm J s1 kgm2s3 W V kgm2s3A1 机械功率 电功率

电流单位:安培  定义: 无限长 截面可忽略 安培是一恒定电流,若保持在处于真空中相距1 米的两无限长、而圆截面可忽略的平行直导线内,则在此两导线之间所产生的力在每米长度上等于2107牛顿。 1 m 1 m 2107 N 电流 电流 

电学单位的确定 电流单位的确定 核磁共振电流量子标准 电流天平法 电动力计法 瓦特绝对测量 p:2.675 222 005(63) x 108 s-1 T-1 (CoDATA 2010) http://physics.nist.gov/cgi-bin/cuu/Value?gammap|search_for=proton

电学单位的确定 电压单位的确定 约瑟夫森效应电压量子标准 微分法绝对测量伏特 积分法绝对测量伏特 开尔文绝对静电计 液体静电计 KJ:483 597.870(11)  109 Hz V-1(CoDATA 2010) http://physics.nist.gov/cgi-bin/cuu/Value?kjos|search_for=josephson

电学单位的确定 电阻单位的确定 量子化霍尔效应电阻量子标准 计算电容法绝对测量电阻 计算互感法 RK:25 812.807 4434(84) (CoDATA 2010) http://physics.nist.gov/cgi-bin/cuu/Value?rk|search_for=klitzing

电磁学计量单位量纲的确定 基本单位 电荷Coulomb定律 量纲表示方法: 质量:[Mass]、长度:[Length]、时间:[Time] 电荷的量纲: 电流的量纲:

电磁学计量单位量纲的确定 基本单位 磁荷Coulomb定律 磁荷的量纲: Biot-Savart定律 电流的量纲:

电磁学计量单位量纲的确定 基本单位 电荷Coulomb定律 电流的量纲: Ampère定律 速度的量纲 Maxwell

退磁效应 DeMagnetizing Effect (磁路、几何形状、尺寸、磁导率)

磁路1 磁 路 磁路:磁力线的通路 Epstein square 1、闭合磁路: 材料自身构成 材料与其它软磁轭构成

磁 路 磁路:磁力线的通路 开放磁路带来的问题: 退磁效应 镜像效应 2、开放磁路: 磁路2 基于电磁铁的各种VSM、AGFM、MB、(S)MOKE; 基于超导磁体的各种磁强计: ESM、ACMS、MPMS、SVSM、PPMS_VSM 开放磁路带来的问题: 退磁效应 镜像效应

磁 路 磁路:磁力线的通路 3、等效电路图: 磁路3 Redge gap Rgap Rsurface 软 铁 软  R 铁 永磁体 r

磁路4 磁 路 标准语言:磁动势、磁链、磁阻、磁导 4、磁路定理: Gauss定理(磁通连续性定理) Ampère环路定理(磁路Ohm定理)

正确处理退磁效应 退磁效应的起因 退磁效应的影响程度 如何确定退磁因子 退磁因子与退磁场的关系 开放磁路、样品被磁化  退磁效应 1 2

退磁效应的理论处理 退磁效应1 静磁学边值问题 设空间充满磁导率为2的介质,在此空间存在一均匀的平行磁场H0,将某一磁导率为1的任意形状物体放置在此空间中,求解该物体内部感生的磁化强度和磁场强度。

退磁效应的理论处理 退磁效应2 求解依据: 1、Maxwell方程: (J=0,静磁学) 2、唯一性边界条件: 3、磁化方程:

退磁效应的理论处理 退磁效应3 求解方法: 分离变量法 Laplace方程: 磁标势 均匀磁化:=0

Magnetostatic principles in ferromagnetism 退磁效应的理论处理 退磁效应4 求解方法: 1、引力势: Poisson:旋转椭球体 2、磁标势级数展开: R. I. Joseph 3、电感方法: D. X. Chen 4、能量方法: A. S. Arrott Magnetostatic principles in ferromagnetism W. F. Brown, Jr., 1962, North-Holland Publishing Company, Amsterdam

退磁效应的影响 之一:只有旋转椭球体可以被均匀磁化 之二:只有旋转椭球体的退磁因子有解析解 J. A. Osborn, 退磁效应5 退磁效应的影响 之一:只有旋转椭球体可以被均匀磁化 作业 之二:只有旋转椭球体的退磁因子有解析解 证明:任何一本《电磁学》,或者 J. A. Osborn, “Demagnetizing Factors of the General Ellipsoid” Phys. Rev., 67(11&12) (1945) 351-357.

旋转椭球体的退磁因子 旋转椭球体:精确解(解析解) 退磁因子1 c b 定义椭率: (绕c轴旋转) a 真空中: 扁椭球(oblate spheroid) r > 1 r < 1 长椭球(prolate spheroid) r = 1 G:几何

等价表达式

旋转椭球体的退磁因子 退磁因子2 r Nc 0.0 1.000 0.8 0.3944 0.1 0.8608 0.9 0.3618 0.2 0.7505 1.0 1/3 0.3 0.6614 1.5 0.2330 0.4 0.5882 1.6 0.2187 0.5 0.5272 2.0 0.1736 0.6 0.4758 3.0 0.1087 0.7 0.4321 5.0 0.0558

其它形状的退磁因子 均匀磁化假设: 均匀退磁场假设: 退磁因子3 通量退磁因子Nf(the fluxmetric (ballistic) demagnetizing factor ) x y z Nf 中心截面的平均磁化强度与平均退磁场强度之比 Nm 整个样品的平均磁化强度与平均退磁场强度之比 强度退磁因子Nm(the magnetometric demagnetizing factor )

圆柱体的退磁因子 退磁因子4 均匀磁化:(h方向) h 2a 定义长径比: 第1类完全椭圆积分 第2类完全椭圆积分

圆柱体的退磁因子 退磁因子5 r Nf Nm 0.0 1.000 0.8 0.2905 0.3619 0.1 0.7845 0.7967 0.9 0.2592 0.3349 0.2 0.6565 0.6802 1.0 0.2322 0.3116 0.3 0.5604 0.5947 1.5 0.1418 0.2301 0.4 0.4842 0.5281 1.6 0.1298 0.2186 0.5 0.4221 0.4745 2.0 0.0935 0.1819 0.6 0.3705 0.4303 3.0 0.0480 0.1278 0.7 0.3273 0.3933 5.0 0.0189 0.0799

圆柱体的退磁因子 简化公式: 退磁因子6 2a 当r >20时: h r >>1(细长圆柱体)时

长方体的退磁因子 退磁因子7 均匀磁化假设: c a b 沿 c 方向:

长方体的退磁因子 退磁因子8 退化情况下: b 如果:b   沿 c 方向: c a 薄片状

长方体的退磁因子 退磁因子9 a c 四方体 退化情况下: 如果:a = b 沿 c 方向:

四方体的退磁因子 退磁因子10 简化公式: a c 四方体 a = b

四方体的退磁因子 退磁因子11 r Nf Nm 0.0 1.000 0.8 0.3178 0.3843 0.1 0.7933 0.8051 0.9 0.2862 0.3571 0.2 0.6717 0.6942 1.0 0.2587 1/3 0.3 0.5803 0.6124 1.5 0.1639 0.2492 0.4 0.5073 0.5482 1.6 0.1509 0.2371 0.5 0.4473 0.4959 2.0 0.1109 0.1983 0.6 0.3971 0.4525 3.0 0.0586 0.1404 0.7 0.3544 0.4157 5.0 0.0236 0.0883

退磁因子的实验测定 直接测量: ? 替代测量:有效退磁因子Neff 退磁因子12 其它:磁共振 将M-H曲线与相同材料的N = 0的M-H曲线比较,拟合 H 闭合磁路 特殊极限形状

退磁因子的实验测定 退磁因子13 旋转椭球体的一致进动本征频率: Kittel公式 仅为教学使用

退磁效应6 退磁效应的影响 之三:样品内部磁场强度必须修正 Hint 所有与磁场有关的量 Hext M 样品内部磁场: 样品的磁化率:

退磁效应对什么量有影响 (Hint , M) M (Hext , M) Hext Hd 所 有 与 Hint 有 关 的 量!

影响程度 未修正 修正

规则形状

非规则形状 学习微磁学 去找张宏伟老师! 其它变通方法 W. F. Brown, Jr., Magnetostatic principles in ferromagnetism, 1962, North-Holland Publishing Company, Amsterdam 去找张宏伟老师! 其它变通方法

退磁效应的影响 之四:理论上没有影响的量 之五:理论上可以忽略退磁效应的影响 所有与磁场无关的量 ? 退磁效应7 1、M = 0, Hd = 0 内禀矫顽力HCJ 2、 = 0,  饱和磁化! 饱和磁化强度MS 3、与内部磁场强度无关! 少见 之五:理论上可以忽略退磁效应的影响 ? 1、磁化率较低: 2、N = 0 H 特殊极限形状 闭合磁路

退磁因子-退磁场 退磁效应8 几何退磁因子:只与样品形状有关! Hext 1,Hint M 2

退磁因子-退磁场 实际退磁场:还与样品所处环境有关! 退磁效应9 如果2 = 0: 如果2 = 1: 1,Hint Hext 1,Hint M 2 如果2 = 1: 如果2 > 1 = 0 :?

课后作业-2 在你的实际测量过程中, 是如何处理退磁效应的影响的?

镜像效应 Image Effect (磁路、镜像感应、磁导率)

镜像效应-似曾相识 VSM@EM的磁化曲线 M O H 极头饱和;镜像效应!

镜像效应的本质 开放磁路、样品被磁化  镜像效应 镜像效应的起因和处理 镜像效应的影响 镜像效应的消除 P. Weiss and R. Forrer, “Aimantation et phenomene magnetocalorique du nickel,” Ann. Phys. Paris, 5 (1926) 153-213. S. R. Hoon and S. N. M. Willcok, “The direct observation of magnetic images in electromagnet vibrating sample magnetometers,” J. Phys. E: Sci. Instrum., 21 (1988) 480-487.

镜像效应的起因 开放磁路、样品被磁化  镜像效应 退磁效应 静磁感应 镜像效应 1 2 a 镜像效应1 Hint Hext M ’ M 样品内部磁场 样品对外部的影响 退磁效应 静磁感应 镜像效应 磁场 磁矩

镜像效应的处理 依据:唯一性定理 在给定的边界条件下,Poisson方程 或者Laplace方程 具有唯一解。  虚拟的“镜像”磁矩 镜像效应2 依据:唯一性定理 在给定的边界条件下,Poisson方程 或者Laplace方程 具有唯一解。  虚拟的“镜像”磁矩

镜像效应的处理 镜像效应3 虚拟的“镜像”磁矩 2.0a 1.0a 1.5a 0.5a x r m0 镜像1 镜像2

镜像效应的影响 没有影响的情况:不存在? 影响:所有的未饱和磁化的材料 具体影响之一:实测磁矩的数值 具体影响之二:磁矩的定标 镜像效应4 退磁效应不影响实测磁矩的数值 具体影响之二:磁矩的定标 退磁效应也影响磁矩的定标!

镜像效应的影响 降低镜像效应的影响 特别提示:超导材料同样存在镜像效应! 镜像效应5 降低镜像效应的影响 电磁铁极头:1、不用极头;2、线圈远离极头;3、修正 磁导率~磁场强度关系已知! 特别提示:超导材料同样存在镜像效应! 文献:RSI,64 (1993) 3357-3375 (Andrzej Zięba) Image and sample geometry effects in SQUID magnetometers

误差分析 与 测量不确定度 误差 测量结果减去被测量的真值 测量不确定度 表征合理地赋予被测量之值的分散性,与测量结果相联系的参数

通用计量术语:测量与结果 量 量值 测量不确定度 最佳估计值 期望值 真值 测量结果 约定真值 指定值 参考值 未修正结果 已修正结果 修正值=-系统误差

为什么采用测量不确定度 误差与测量不确定度的比较 误 差 测量不确定度 表示方法 定义 性质 评价方法 分类 使用规则 有正号或者负号的量值 误 差 测量不确定度 表示方法 有正号或者负号的量值 无符号的参数,置信区间 定义 测量结果偏离真值的大小 测量结果的分散性 性质 客观存在,与人类的认识程度无关 与人类的认识程度有关 评价方法 真值不可知导致误差不能准确得到 可以进行定量确定,A、B 分类 随机误差、系统误差 一般不必区分其性质 使用规则 必须用系统误差修正测量结果 不能用来修正测量结果

实验中的测量不确定度 对被测量的定义不完整或者不完善 实现被测量定义的方法不理想 取样的代表性不够 对测量过程的环境因素的影响认识不足 对模拟式仪器的读数存在人为读数偏差 测量仪器的计量性能的影响 赋予计量标准的值和标准物质的值不准确 引用的数据或者其它参量的不确定度 与测量方法和测量程序有关的近似性和假定性 在表面看来完全相同的条件下,被测量重复观测值的变化

测量结果表示方法 一般测量 表示方法1 不给出置信概率 正态性假设 测量次数很多 第一种表示方法: 第二种表示方法: k=2表示大部分,取决于uc(y)的分布及其自由度 如果取k=3等,需要说明根据。

测量结果表示方法 规定测量 表示方法2 给出置信概率 正态性假设 规定测量次数 置信概率95%。共有四种表示方法: k95取决于uc(y)的分布及其自由度 如果取p=99%等,需要说明根据。

测量结果表示方法 表示方法3 计量学测量 使用合成标准不确定度。共有四种表示方法: 常 数 基本常数、基本量、SI基本单位的复现

测量结果表示方法 两种形式 B= 927.400 915(23)  10-26 J T-1 表示方法小结 计量学基本常数:(不采用区间形式) B= 927.400 915(23)  10-26 J T-1 其它种类测量结果:(采用区间形式)

备 注 剩余的幻灯片将比较详细地解释与“误差分析与测量不确定度的评定”相关的内容。 已经掌握的,可以略过。

测 量 误 差 误差、真值、测量结果 误差=测量结果-真值

误 差 =测量结果减去被测量的真值 误差  测量结果 xp:由测量所得到的赋予被测量的值 真值 x:与给定的特定量的定义一致的值 测量 误 差 误差  =测量结果减去被测量的真值 测量结果 xp:由测量所得到的赋予被测量的值 作为测量对象的特定量 真值 x:与给定的特定量的定义一致的值 测量 以确定量值为目的的一组操作 量值 由一个数乘以计量单位所表示的特定量的大小 计量单位 为定量表示同种量的大小而约定地定义和采用的特定量

平面三角形内角和;圆周率;电子自旋磁量子数 真 值 真值 x 与给定的特定量的定义一致的值 1、只有通过完善的测量才有可能获得。 2、是不确定的。 3、不一定只有一个。 真值的本性 理论真值 不确定度为零的量值 没有误差的量值 平面三角形内角和;圆周率;电子自旋磁量子数 不可能通过测量获得真值!

误 差 公 理 测量误差是客观存在的 测量误差自始至终存在于一切测量过程中 测量误差在本性上是不可知的 测量误差不可能完全消除 误 差 公 理 测量误差是客观存在的 测量误差自始至终存在于一切测量过程中 测量误差在本性上是不可知的 测量误差不可能完全消除 测量误差是可以被控制的 不可能通过测量确定误差!

对于给定目的、具有适当不确定度的、赋予特定量的值。有时该值是约定采用的。 约 定 真 值 约定真值 xC conventional true value 对于给定目的、具有适当不确定度的、赋予特定量的值。有时该值是约定采用的。 计量学约定真值 SI基本单位:CGPM; 常数:DODATA; 法定计量单位 精确值 标准器复现的量值 已修正的算术平均值 近似值 被测量的实际测量值

与误差相关的术语 精密度(precision) 随机误差(random error) 正确度(trueness) 系统误差(systematic error) 准确度(accuracy) 测量结果与被测量真值之间的一致程度 方差(variance) 标准偏差(standard deviation)

与误差相关的术语 测量仪器的允许误差(permissible error) 绝对误差(absolute error) 相对误差(relative error) 测量仪器的引用误差(fiducial error) xf =标称量程

与误差相关的术语 测量仪器的准确度等级(accuracy class) 测量仪器的最大引用误差 准确度的等别、级别 (max:最大允许误差) 准确度的等别、级别 等别:根据扩展不确定度U确定,1等、2等… 级别:根据最大引用误差rmax确定,0.1级、0.2级… 电工仪表:0.1、0.2、0.5、1.0、1.5、2.5、5.0

测量不确定度 测量不确定度是一个定量的概念 误差是一个理想化的概念 真值是一个理想化的概念 准确度是一个定性的概念

测量不确定度表示指南(GUM) Guide to the Expression of Uncertainty in Measurement 发布:1993年(ISO/TAG 4/WG 3) 1995年修订 国际标准化组织(ISO) 国际计量局(BIPM) 国际法制计量组织(OIML) 国际电工委员会(IEC) 国际理论物理与应用物理联合会(IUPAP) 国际理论化学与应用化学联合会(IUPAC) 国际临床化学联合会(IFCC) 1963年,Eisenhart(NIST) 1977年,CIPM要求BIPM着手解决表示方法的统一问题 1980年,INC-1(1980)CIPM要求ISO起草指南

Evaluation and Expression of Uncertainty in Measurement 测量不确定度在中国 1999年01(05)月01日 中华人民共和国国家计量技术规范 《 JJF 1059-1999 测量不确定度评定与表示》 Evaluation and Expression of Uncertainty in Measurement 代替《JJF 1027-1991 测量误差及数据处理》中的测量误差部分 《测量不确定度评定与表示指南》(中国计量出版社,2000年)

测量不确定度 Uncertainty of measurement 词穷 测量不确定度 Uncertainty of measurement uncertainty, doubt, dubiety, doubtfulness, dubiousness, suspicion, mistrust, distrust, misgiving, skepticism,

参数=标准偏差或其倍数=置信区间的半宽度 测量不确定度 合理、分散性 定义 表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。 被测量之值=真值 测量结果=被测量之值的最佳估计 参数=标准偏差或其倍数=置信区间的半宽度 uncertainty of measurement: (GUM-1995) parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand.

测量不确定度  误差 习惯成自然 测量误差 测量不确定度 定 义 与真值之差 与测量结果相关的分散性参数 性 质 挑战不可知! SI 测量误差 测量不确定度 定 义 与真值之差 与测量结果相关的分散性参数 性 质 挑战不可知! 反映不可知! 应 用 没有可操作性! 具有可操作性! 来 源 随机性、系统性(与被测量的单位相同) 分 类 随机误差、系统误差 A类标准不确定度 B类标准不确定度 表 示 含有正负号 没有正负号

最佳估计值 评价估计值优劣的依据 合理1 随机变量: 测 量 值:xk 估 计 值:xi 1、无偏性:估计值=之值的数学期望E()  评价估计值优劣的依据 1、无偏性:估计值=之值的数学期望E() 2、有效性:方差Var()=极小值的无偏估计值 算术平均值 3、一致性:对于任意给定的正数,

算术平均值 作为最佳估计值的条件:n n ? 合理2 1、重复性条件(复现性条件)下,n次独立测量 2、中心极限定理:均值的分布 3、大数法则:样本代表总体的能力 均值: 方差: n ? 4、加权平均值:对于不同2

分散性的参数:方差 评定依据 分散性1 误差 1、无偏性: 正态分布的 标准方差 2、有效性: 3、一致性: 残差 (数学) 样本方差 实验方差

简单推导 数学期望

统计量导出的分布 2分布 总体方差 样本方差

实验方差、实验标准差 分散性2 实验方差(样本方差) 贝塞耳公式: 均值的方差 实验标准差(样本标准差) 均值的实验标准差

不确定度的评定方法 评定方法:统计方法与非统计方法结合 A类标准不确定度:统计方法 B类标准不确定度:非统计方法 表示方法 评定方法1 评定方法:统计方法与非统计方法结合 A类标准不确定度:统计方法 B类标准不确定度:非统计方法 表示方法 随机不确定度 系统不确定度 合成标准不确定度u 扩展不确定度U 置信区间的半宽度Up 相对不确定度

A类标准不确定度 分散性参数=标准差 实验标准差 均值实验标准差 合并样本标准差 给出结果 A类标准不确定度 xk 评定方法2 n 个独立测量值 m组,每组ni 个独立测量值

合并样本标准差 pooled m组测量,每组重复次数ni,测量值xik 第i组: m个组: 自由度 测量结果 xik A类 标准不确定度

B类标准不确定度 分散性参数=标准差 技术资料来源 B类标准不确定度 标准差的k倍 U=ks(xk) u(xk)= s(xk)=U/k 评定方法3 分散性参数=标准差 技术资料:分布 技术资料来源 B类标准不确定度 标准差的k倍 U=ks(xk) u(xk)= s(xk)=U/k 置信概率p Up, p u(x)=Up/kp 置信区间半宽度 a, p u(x)=a/kp 置信概率=100% a u(x)=a/k100 数值修约 间隔x u(x)=0.29x 重复性限 r u(xk)=r/2.83 准确度级别

置信概率=100% 分布类型 p(%) kp u(xk) 正态 99.73 3 a/kp 梯形  0(三角) 100 1 (矩形、均匀) 0.71 2 反正弦 两点 1

置信概率=100% 例子:~均匀分布 B类标准不确定度: 1、数值修约:x =修约间隔,0.1  0.029 3、不对称半宽度:

合成标准不确定度 合成标准不确定度uc(y) 合成标准不确定度=合成方差的正平方根 不遗漏、不重复 评定方法4-1 协方差 不相关: 相关: 自由度: 不遗漏、不重复

合成标准不确定度 评定方法4-2 直接测量(x1,x2,…) 间接测量 尽量选择不相关的x1,x2,…

扩展不确定度 定义:区间 两种表示方法: 一般原则(大部分): 给定概率: y~正态: 评定方法5-1 定义:区间 确定测量结果区间的量,合理赋予被测量之值分布的大部分可望含于此区间 两种表示方法: 一般原则(大部分): 给定概率: y~正态:

包含因子k 置信概率p、包含因子kp、置信区间2Up x 评定方法5-2 举例:正态 50% [-0.67, 0.67] p  – 3  –2  –1   +1  +2  +3 68.27% 95.45% k=6 p=99.99999980% 十亿分之二 99.73% p

包含因子k 包含因子kp与y的分布有关 评定方法5-3 为什么? p kp Up 50% 0.674 U50 68.27% 1.000 90% 1.645 U90 95% 1.960 U95 95.45% 2.000 99% 2.576 U99 99.73% 3.000 中心极限定理 测量次数ni>10 60次以上 当uc(y)的自由度很大时

包含因子k 评定方法5-4 测量次数较少的kp~t 分布 中心极限定理

t分布 n v f(x) 2 1 3 4 5 6

t分布的包含因子 tp(veff) 评定方法5-5 veff p×100 68.27 90 95 95.45 99 99.73 1 1.84 6.31 12.71 13.97 63.66 235.80 2 1.32 2.92 4.30 4.53 9.92 19.21 3 1.20 2.35 3.18 3.31 5.84 9.22 4 1.14 2.13 2.78 2.87 4.60 6.62 5 1.11 2.02 2.57 2.65 4.03 5.51 10 1.05 1.81 2.23 2.28 3.17 3.96 20 1.03 1.72 2.09 2.85 3.42 50 1.01 1.68 2.01 2.05 2.68 3.16  1.000 1.645 1.960 2.000 2.576 3.000

举例说明-1 B类标准不确定度可以忽略 2次测量结果:x1= 2.32 m,x2=2.38 m 算术平均值: 实验标准差: A类标准不确定度: 根据t 分布:自由度v=2-1=1;t95(1)=12.71;t99(1)=63.66 扩展不确定度: 扩展不确定度:

举例说明-1 没有意义的置信概率! n=2,v=1 p=50% p=70.48% 大部分 p=79.52% p=95% p=99%

举例说明-2 如果测量次数n=5 n=5,v=4 p=62.61% p=88.39% 大部分 p=96.01% p=95% p=99%

举例说明-3 B类标准不确定度占主导地位 3次测量结果:x1= 2.3 V,x2=2.3 V ,x3=2.3 V 算术平均值: 实验标准差: A类标准不确定度: B类标准不确定度: 合成标准不确定度: 由于B类标准不确定度占主导地位,因此包含因子具有均匀分布 扩展不确定度: k95=1.65;k99=1.71

置信概率与相应的包含因子 必须根据测量结果及其合成标准不确定度所遵循的具体分布,确定给定置信概率所对应的包含因子。避免人为夸大或者降低置信水准。

测量结果表示方法 一般测量 表示方法1 不给出置信概率 正态性假设 测量次数很多 第一种表示方法: 第二种表示方法: k=2表示大部分,取决于uc(y)的分布及其自由度 如果取k=3等,需要说明根据。

测量结果表示方法 规定测量 表示方法2 给出置信概率 正态性假设 规定测量次数 置信概率95%。共有四种表示方法: k95取决于uc(y)的分布及其自由度 如果取p=99%等,需要说明根据。

测量结果表示方法 表示方法3 计量学测量 使用合成标准不确定度。共有四种表示方法: 常 数 基本常数、基本量、SI基本单位的复现

测量结果表示方法 两种形式 B= 927.400 915(23)  10-26 J T-1 表示方法小结 计量学基本常数:(不采用区间形式) B= 927.400 915(23)  10-26 J T-1 其它种类测量结果:(采用区间形式)

曲线拟合参数的标准不确定度 常用方法 所求解的参数:a、b 可能的函数关系:

1805年:A.-M. Legendre;1809年:J. C. F. Gauss 曲线拟合参数的方法 最小二乘法原理 1805年:A.-M. Legendre;1809年:J. C. F. Gauss n个实测值:(xi, yi) 参数:a、b 目标:

从原始数据计算

曲线拟合参数 参数a、b的标准不确定度 r为参数a、b的相关系数。 s为实验标准差(剩余标准差):

曲线拟合参数 拟合结果y的标准不确定度 根据测量不确定度的传播定律: y与x的线性相关系数:

有效数字的位数 给出结果的有效数字位数 不确定度的有效数字位数 计算过程中的有效数字位数 单位换算时的有效数字确定

给出结果的有效数字位数 给出结果 与不确定度的相同单位的末位对齐 与不确定度的修约间隔相同 被测量的最终结果 例子1 m=100.021 445 50 g;U95=0.36 mg; 最终给出结果:m=100.021 45 g;U95=0.36 mg; 例子2 m=100.021 g;U95=0.36 mg; 最终给出结果:m=100.021 00 g;U95=0.36 mg;

不确定度的有效数字位数 规定(《JJF 1059-1999》/GUM) 通常,最多为2位有效数字 一般,采用进位修约 推荐(我的建议-应该加在《指南》里) 第一位数字大于5,保留1位有效数字。 第一位数字小于5,保留2位有效数字。

不确定度的有效数字位数 举例 不确定度:0.01(单位:略) 0.005 13,0.014 92 不确定度:0.05(单位:略) 修约导致的 相对不确定度 0.005 13,0.014 92 不确定度:0.05(单位:略) 0.045 13,0.054 92 级 别

计算过程中的有效数字位数 数据修约:一般规则 测量结果 GB 3101-1993《有关量、单位和符号的一般原则》 提醒-1:修约间隔后面一位数字=5 修约间隔=0.01 修约间隔位为偶数,则舍去; 修约间隔位为奇数,则进位。 提醒-2:一次完成,不能连续修约 15.4546 mm,修约间隔=1 mm:15 mm

计算过程中的有效数字位数 数据修约:不确定度 不确定度计算值=10.47 m 提醒-1:末位后面的数一般进位而不是舍去  11 m 提醒-2:也可以根据一般规则  10 m 《JJF 1059-1999》的例子: 28.05 kHz28 kHz 2位有效数字

计算过程中的有效数字位数 数据修约:有效自由度 取整数:小数点后面的数一般舍去而不是进位 veff=14.87  veff=14

计算过程中的有效数字位数 数据修约:计算过程中 在计算过程中,无论是测量结果本身的计算,还是不确定度的评定,为了避免修约误差(round-off errors),一般应该保留更多位数。 在合成标准不确定度的计算中,如果相关系数的绝对值接近于1,则相关系数应该给出3位有效数字。 极限值: 极大值:只舍不入;极小值:只入不舍

单位换算时的有效数字确定 这种情况会越来越少,但会永远存在 物理学常数 http://physics.nist.gov/cuu/Constants/ 玻尔磁子B(2006 CODATA): 927.400 915(23) x 10-26 J T-1 电子磁矩e /B(2006 CODATA): -1.001 159 652 181 11(74) 真空中光速c0(2006 CODATA):299 792 458 m s-1 0.6c0 =179 875 474.8 m s-1 标准大气压atm(2006 CODATA):101 325 Pa 10 atm = 1 013.25 kPa

单位换算时的有效数字确定 测量结果:与换算前相同的原则 与不确定度的相同单位的末位对齐 与不确定度的修约间隔相同 1 in=25.4 mm 1 mmHg = 133.322 4 Pa 血压: (136  0.5) mmHg= (18.13  0.07) kPa 《关于血压计量单位使用规定的补充通知》 (质技监局量函【1998】126号)

单位换算时的有效数字确定 不规范的近似数 一般原则:有效数字位数相同 建议采用: 换算前:B;前2位数字:B0;有效位数:b 换算后:A;前2位数字:A0;有效位数:a 大数少一位;其它情况位数相同。

测量次数 应该测量多少次? 依据:测量的目的及要求 方法:标准、规范、规程的规定方法 无规定时的方法 一次测量结果?

测量次数 依据:测量的目的及要求 1、不包括计量学意义的测量活动 2、以确定量值为目的(独立测量结果) 根据相应的标准、规范、规程的规定进行测量 无规定时:进行重复性测量 3、以确定量值的变化规律为目的(相关测量结果) 最小二乘法中的不确定度

在相同的测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性。 重复性测量 重复性 在相同的测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性。 相同的测量条件: 相同的测量程序; 相同的观测者; 在相同的条件下使用相同的测量仪器; 相同的地点; 在短时间内重复测量。

重复性测量 重复性标准差sr:重复性测量结果的分散性 即实验标准差: 重复性限r:两次测量结果之间的极差限 合并样本标准差: 重复性限r:

测量次数的确定 已知重复性限r 现行有效的国家(推荐)标准: 《GB/T 6379.4-2006 测量方法与结果的准确度(准确度与精密度)第4部分:确定标准测量方法正确度的基本方法》 被替代的国家(推荐)标准: 《GB/T 11792-1989 测试方法的精密度 在重复性或再现性条件下所得测试结果可接受性的检查和最终测试结果的确定》

测量次数的确定 已知重复性限r 首先进行两次测量,得到测量结果:x1和x2 1、如果 则,2个结果都可以接受 最终测量结果为: 2、如果 将4个测量结果从小到大进行排序:

测量次数的确定 已知重复性限r 如果 则,4个结果都可以接受 最终测量结果为: 如果 则,取4个结果的中位数 最终测量结果为:

测量次数的确定 给定置信概率和取值区间d0的要求 区间宽度: 先进行m次测量,根据测量结果计算: 比较dn=m与d0,确定测量次数。

只进行一次测量 可信性? 测量结果本身不具有统计学意义的可信性! 1、无偏性: 2、有效性: ? 3、一致性:

只进行一次测量 准确性? 测量结果本身不具有统计学意义的可信性! 1、准确性: 2、分散性(标准不确定度):

只进行一次测量 可操作性? 测量系统在受控状态下: 仪器受控状态核查: 1、最终测量结果=单次测量结果 2、分散性=合并样本标准差 假设:此次测量结果与之前的其它测量结果具有相同的分散性