第七章 金属催化剂及其相关催化过程  一、引言 金属催化的某些反应.

Slides:



Advertisements
Similar presentations
材 料 科 学 物理科学与技术学院 方 鹏 飞.
Advertisements

3-1 食物中的養分與能量 趣味科學實驗:膨糖的製作 3-2 酵素 重要性 可改變代謝作用反應進行的快慢 成分 蛋白質 影響因素
第一节 开发利用金属矿物和海水资源 金属矿物的开发利用 易晓璐 2009年5月22日.
第一单元 化学基本概念 第1讲 物质的组成、分类.
沉痛悼念郭可信院士.
放射化学基础 第一章 绪论 §1-1 放射化学的定义和内容
第十章 化学键与分子结构 §1 离子键理论 1916 年德国科学家 Kossel ( 科塞尔 ) 提出离子键理论。 一 离子键的形成
九年级化学 下册 横岗中学 周庆明
2.2 合金的结晶  二元合金的结晶 2.2.2 合金的性能与相图的关系 2.2.3 铁碳合金的结晶.
  厦门市诗坂中学 陈苑然.
酸 碱 盐 复 习 课 阜宁县张庄中学王宏雨.
第2章 物质结构基础 Basic of Substance Structure Chapter 2.
颜色: 在可见光区 nm范围内,从长波一端向短波一端的顺序依次为: 红色 nm 橙色 nm 黄色 nm 绿色 nm 青色 nm 蓝色 nm
第 六 章 物证仪器分析技术.
第一章 工具书.
第二十三章 铁系元素和铂系元素 §1 铁系元素 VIII 族中 9 种元素,按其性质分为两个系 Fe Co Ni 铁系元素 对碱稳定
第九章 过渡金属元素(I) §9—1 过渡金属元素的通性 §9—2 IVB族元素(Ti Zr Hf) §9—3 VB族元素(V、Nb、Ta)
低碳生活 从我做起! 10级物理系 张羽菲
教学目标 分析大堰河的形象、情感,解读诗人的歌唱; 把握抒情诗的记事、写人,探知作品的特色。 学法指引 学习真话、真情的写作表达。 重点探究
中学化学高级教师 福清市首届名师 福州市化学会理事
目标引领 考情分析   1.了解物质的量的单位——摩尔(mol)、摩尔质量、气体摩尔体积、阿伏加德罗常数的含义。 2.根据物质的量与粒子(原子、分子、离子等)数目、气体体积(标准状况下)之间的相互关系进行有关计算。   物质的量是化学计算的基础,贯穿于高中化学的始终,是高考的必考点。高考主要围绕物质的量、摩尔质量、气体摩尔体积、阿伏加德罗定律,并结合氧化还原反应中电子转移、溶液中离子数目、分子中所含共价键数目、粒子中所含电子数等考查阿伏加德罗常数的应用。预计2013年高考考查的重点是将元素化合物、基本概念
課程名稱:常見元素與元素符號 編授教師: 中興國中 楊秉鈞.
第 3 章 化學反應 3-1 化學式及百分組成 3-2 化學反應式與平衡 3-3 化學計量 3-4 化學反應中的能量變化.
为了增加乳制品中氮元素的含量,加入有害物质三聚氰胺。
人教版必修2 第四章 化学与自然资源的开发利用 黑龙江省庆安一中 孙秀民.
第13章 新催化材料 一、金属碳化物及氮化物 金属碳化物/氮化物具有类贵金属的催化性能。 1.1 金属碳化物和金属氮化物的结构
溫室效應.
第五章 氦原子和多电子原子 4.1 氦原子的光谱和能级 4.2 全同粒子和泡利不相容原理 4.3 多电子原子的电子组态
解读高考试题 优化备考方略 武汉市教育科学研究院 吴明好.
第四章 各类催化剂及其催化作用 本章主要讲述: 要求深刻理解和熟练掌握的重点内容有: 酸碱催化剂及其催化作用;
一 烯烃的亲电加成 1 加成反应的定义和分类 2 亲电加成反应机理的归纳 3 烯烃与卤素的加成 4 烯烃与氢卤酸的加成
文化生活第三单元 中华文化和民族精神.
第3讲 物质的分类.
第九章 氧化还原反应与氧化还原滴定法 第一节 氧化还原反应 第二节 原电池与电极电势 第三节 氧化还原滴定法 制作人:陶文娟.
电池探秘 高一化学组 张红燕.
《化学反应原理》期末复习 专题1 化学反应与能量变化 灌南高级中学高二化学组.
第四章 电化学基础 第一节 原电池.
无机化学多媒体电子教案 7.2 多电子原子结构.
第十六章 d区元素(一) §16.1 d区元素概述 §16.2 钛 钒(无内容) §16.3 铬 钼 钨 多酸型配合物 §16.4 锰
課程名稱:原子量與莫耳 編授教師: 中興國中 楊秉鈞.
纪念中学 PPT
苯 应用模板上加了图片.
§ 10.2 配合物的化学键理论 一、价键理论 二、分子轨道理论 三、晶体场理论
有机化学 Organic Chemistry
第十二单元 有机化学基础(5) 授课人:董 啸.
細數原子與分子 編輯/楊秉鈞老師 錄音/陳記住老師 ◆ 原子量與分子量 ◆ 計數單位─莫耳 ◆ 公式整理 ◆ 範例─莫耳 ◆ 體積莫耳濃度
第二章 开链烃 §2-1 烷 烃 §2-2 烯 烃 §2-3 炔烃和二烯烃.
第八章進入原子的世界 第 6 章 進入原子的世界.
第一章原子结构与性质 第一节原子结构.
科学发现系列讲座 元素周期律的发现.
《2015考试说明》新增考点:“江苏省地级市名称”简析
2.1 焊接化学冶金的特殊性 2.2 焊接区内气体与金属的作用 2.3 焊接熔渣对金属的作用
脂烃.
复习回顾 符号H、2H、H2、2H2各具有什么意义? ① H表示氢元素或一个氢原子。 ② 2H表示2个氢原子。
第三节 分子间作用力 一、分子的极性与分子的极化 二、分子间作用力 三、氢键.
大气的垂直组成和分布.
第二节 元素周期律 第二课时 来自:高考直通车APP.
火,第一次支配了一种自然力,从而把人从动物界分离开来!
第八章 配合物分子结构和性质 第一节 晶体场理论 配合物中中心金属与配体间的相互作用视为类似于离子晶体中正、负离子间静电作用
慧眼识金属:.
大头婴儿 大头婴儿的头比较大,面部肌肉松驰,表情比较呆滞,对外界事物的刺激反应较低。为什么婴儿长期吃劣质奶粉会出现这种症状?
第四课时.
課程名稱:原子說與分子說 編授教師: 中興國中 楊秉鈞.
粒 子 觀 點 桃園縣立平興國中 陳瓊輝老師.
《结构化学》之 对称元素与对称操作 化学与材料科学学院 翟高红.
质量守恒定律.
第四单元 物质构成的奥秘 课题4 化学式与化合价.
養豬廢水處理 豬糞尿排泄量因豬隻體重、採食飼料品質及飼養方式不同有很大差異,豬隻按NRC(National Research Council;美國國家研究會議 )營養標準餵飼結果,其糞便排泄量(濕重) 約為飼料採食量乾種之51﹪;以一頭體重為150到200公斤的豬為例,每天所排放的糞便量約為2公斤。
-銀 目錄 -銀的簡介 P.1 有關銀的歷史資料~ P.2-4 金屬的一般性質 P.5 銀與生物所產生的反應 P.6 礦石簡介 P.7
第十六章 d 区金属(一).
Presentation transcript:

第七章 金属催化剂及其相关催化过程  一、引言 金属催化的某些反应

1、金属催化剂对某一反应活性的高低与有关反应物吸附在表面后生成的中间物种的相对稳定性有关。 一般说,处于中等吸附强度的化学吸附态分子会有最大的催化活性;过渡金属的性能按周期表中从左到右的顺序递减,这主要是因为过渡金属d轨道充满程度依次增加。 1、金属催化剂对某一反应活性的高低与有关反应物吸附在表面后生成的中间物种的相对稳定性有关。 达到相同反应活性所需温度 甲酸盐的生成热 (kJ/mol)

H2的吸附结果表明H2在Os上的吸附热中等。

2、过渡金属的结构特征 1)简单几何结构模型:等径球的密堆积 六方密堆积(hcp) 面心立方密堆积(fcc)

体心立方密堆积(bcp) fcc hcp bcc 配位数 空间利用率 12 12 8 74.05% 74.05% 68.02%

(fcc) (ABAC) 常见金属几何结构

2)电子结构 价健理论:过渡金属原子以s、p、d杂化轨道组成金属键结合。 能带理论:金属中原子的相互结合能来源于带正电的金属离子和价电子之间的静电作用,原子中内壳层的电子是定域的,而不同能级的价电子组成能带。

费米能级Ef:0K时电子占据的最高能级。 过渡金属的s能带和d能带经常发生重叠,因而影响d能带电子填充的程度: 如,Ni、Pd、Pt的d能带平均有0.4-0.6个电子孔穴; Co的3d能带中的空穴数为0.75个; Fe为0.95个; Cu和Ag的3d能带被完全充满,4s能带是半充满状态。 3、过渡金属杂化键的d轨道百分数d%:价健理论中组成spd杂化键中d原子轨道所占的百分数,是表征过渡金属结构的另一个参量。 如:28Ni [Ar] 3d84s2形成金属键时,金属Ni有两种杂化方式: d2sp3 (A) & d3sp2 (B)

Ni-A:d% = 0.33; Ni-B:d% = 0.43 通常Ni含A型30%,B型70%, 所以Ni的d特性百分数:d% = 0.33  30% + 0.43  70% = 40%

实验结果表明,过渡金属催化剂对某些反应的活性与其d特性百分数有一定关系。 必须将金属的电子结构和几何结构协调起来,同催化活性相关联。

二、巴兰金多位理论( Balandin multiplet theory of catalysis) 多位理论是指在多相催化反应中,反应分子中将断裂的键位同催化剂活性中心应有一定的几何对应关系和能量对应原则。总的来说,在给定的反应中,这两个对应原则应有一定程度的适应。 2.1 几何对应原则:多相催化反应过程中,反应物分子起反应的部分只涉及少数原子,而且作为活性中心的活性体也只是由几个原子所组成的多位体。实现催化作用的基本步骤就是反应分子中起反应的部分与多位体之间的作用。这种作用不仅能使反应物分子的部分化学键发生变形,而且会使部分原子活化,若条件合适,也会促使新键的生成。多位体中原子必须正确排列组合,与反应分子发生键重排的有关原子的几何构型相对应。

1、二位体活性中心:由催化剂上两个原子组成。 如:醇类脱氢 乙醇脱水 实验结果表明,脱氢反应催化剂二位原子间合适的距离要比脱水反应时,这可以从脱氢反应涉及的O-H键长(0.101nm)比脱水反应涉及的C-O键长(0.148nm)短得到解释。

2、四位体活性中心:由催化剂上四个原子组成。 如:乙酸乙酯的分解反应 3、六位体活性中心:由催化剂上六个原子组成。 如:环己烷脱氢

1)活性金属均为fcc或hcp,其(111)面上原子排布与环己烷六角形相对应; 2)活性金属原子间距位于0.24-0.28nm之间,与脱氢分子的有关键长相适应。

2.2 能量对应原则:反应物分子中起作用的有关原子和化学键应与催化剂多位体有某种能量上的对应。 二位体上进行的反应 A-B + C-D → A-C + B-D 假定反应中间过程是A-B键和C-D键的断裂,以及A-C键和B-D键的生成。其相应的能量关系: 1)A-B键和C-D键断裂并生成中间络合物的能量Er’为: Er’ =( -QAB + QAK + QBK)+ (-QCD + QCK + QDK) 其中Q代表键能。 2)中间物分解并生成两个新键的能量Er”为 Er” = ( QAC - QAK - QBK)+ (-QBD - QCK - QDK) 令u代表总反应的能量:u = QAC + QBD – QAB – QCD s代表反应物与产物的总键能:s = QAB + QCD + QAC + QBD q为吸附能量:q = QAK + QBK + QCK + QDK

q = s/2的催化剂最好,因为Er’ = Er”,有利于总反应的进行。所以应根据这样的原则来选择催化剂。 Polanyi关系:活化能与反应能量的相关性:E = A – rEr 放热反应:r = 0.25,A = 46 kJ/mol 吸热反应:r = 0.75,A = 0

三、金属催化剂上的重要反应 3.1 加氢反应 F-T合成:CO与氢气的反应。 1、烷烃的生成: (n+1) H2 + 2n CO → CnH2n+2 + n CO2 (2n+1) H2 + 2n CO → CnH2n+2 + n H2O

甲烷化催化剂活性:Ru > Fe > Ni > Co > Rh > Pd > Pt > Ir 甲烷化反应: 2 H2 + 2 CO → CH4 + CO2 甲烷化催化剂活性:Ru > Fe > Ni > Co > Rh > Pd > Pt > Ir 催化反应活化能都在96-105 kJ/mol 甲烷化反应机理:CO解离为C和O,C逐步加氢生成甲烷,O和另一CO分子结合生成CO2。 Boudouard反应:2 CO ↔ C + CO2,导致积碳。

2、烯烃的生成: 2n H2 + n CO → CnH2n + n CO2 n H2 + 2n CO → CnH2n + n H2O 3、醇类的生成: 2n H2 + n CO → CnH2n+1OH + (n-1) H2O (n+1) H2 + (2n-1) CO → CnH2n+1OH + (n-1) CO2

F-T合成均为摩尔数减小的过程,因此加压对反应的进行有利。 F-T合成产物的分布:在Fe、Co、Ru等表面上得到C1-C5烃的混合物。

3.2 重整反应 1、直链烷烃异构为支链烷烃

2、直链烷烃的脱氢环化 3、烃的氢解 CH3-CH3 + H2 → 2 CH4 C9H20 + H2 → C5H12 + C4H10 C2H5NH2 + H2 → C2H6 + NH3 C2H5Cl + H2 → C2H6 + HCl

4、环烷烃脱氢异构 Pt基催化剂

台阶表面的标记方法: A(s)-[m(htktlt)n(hsksls)] Pt(755)=Pt(s)-[6(111)(100)] Pt(10,8,7)=Pt(s)-[7(111)(310)]

脱氢反应:C-H键和H-H键的断裂; 氢解反应:C-H、H-H和C-C键的断裂

3.3 氧化反应 主要是完全氧化反应催化剂。Ag是乙烯部分氧化制环氧乙烯、甲醇部分氧化制甲醛的催化剂。 研究热点:富氢条件下CO的低温选择氧化。 四、合金催化剂 合金化的作用:几何效应和电子效应 ”集团效应” (ensemble effect) :由具有催化活性原子组成的最小组合。催化惰性的金属与催化活性金属形成合金能够创造出选择性催化某个特定反应的ensemble。 表面偏析:合金中一种金属在表面富集。 电子转移:电子在两种金属之间转移。 协同效应:包括溢流。

金属Cu:[Ar]3d104s1,对多数反应而言,催化活性很低; 金属Ni:[Ar]3d9.44s0.6,对多数催化反应活性比Cu高几个数量级。 Cu-Ni合金催化剂: 电子效应:Cu的d带电子可以流入Ni的d带,改变电子结构; 几何效应:表面偏析,集团效应。 氢解速率方程中指前因子: F:Cu偏析到表面引起的自由能变化; n:合金表面活性中心所含的原子数目。 n=2时上式很好符合实验结果,表明Ni-Cu合金表面对乙烷氢解的活性中心由两个Ni原子组成。

五、负载型催化剂 5.1 载体的作用 1、分散作用:大部分金属原子暴露在表面。 Rh/SiO2催化剂

Rh/TiO2催化剂

基于EXAFS和其它实验结果的高分散的Rh/-Al2O3催化剂的结构模型。

2、载体有时也表现一定的催化活性。 3、金属-载体强相互作用(SMSI)

5.2 负载型双金属催化剂:如烃重整反应中的Pt-Re、Pt-Ir、Pt-Ge等负载型催化剂。 1、F-T合成 1)Pt-Fe/Al2O3催化剂: Pt:Fe5:形成与Pt原子相结合的Fe原子簇,催化惰性; Pt:Fe=0.1:形成铁磁性的Fe2+和Pt-Fe原子簇,催化活性并 且表现对某些目的产物的选择性。 2)Rh/SiO2催化剂:催化合成含氧的C2化合物; Rh-Fe/SiO2催化剂:对生成乙醇和甲醇有利。 3)Ru/SiO2催化剂:生成C2-C3产物; Ru-Cu/SiO2催化剂:对生成甲烷有利。

2、汽车尾气净化催化剂:负载型Pt-Pd-Rh催化剂 Rh:NO的还原; Pt/Pd:CO和烃类的完全氧化 3、负载型Sn-Ni/SiO2催化剂 1)环己酮脱氢生成苯酚:Ni:Sn = 2.5 最佳 2)异丙醇制丙酮:Ni:Sn = 8最佳 上述体系中发现NiSn、Ni3Sn4、Ni3Sn2等合金相 4、负载型Pd-Sn/SiO2催化剂 1)环己酮脱氢生成苯酚:Pd:Sn = 0.3 最佳,Pd-Sn相和-Sn相; 2)环己羟氨转化为苯胺:Pd:Sn = 3最佳,Pd、PdSn、Pd3Sn2、PdSn3等相。

5.3 金属-载体间的强相互作用SMSI H2低温(473K)还原的催化剂比H2高温还原的催化剂吸附H2和CO的能力要高,但催化剂颗粒变化不大,表面也未发生烧结。 H2高温还原的催化剂在673K用O2处理。其吸附H2和CO的能力恢复。

在相近的温度范围内,载体的变化使CO的催化转化率相差了4-8倍,由此看出,金属-载体间相互作用的催化活性影响很大。

观察到Ti4+的还原,证实了Ni和TiO2之间的强相互作用。

5.4 双功能负载型金属催化剂 Pt/Al2O3作为催化重整反应中的双功能催化剂: Pt:催化加氢和催化脱氢功能; 酸性Al2O3载体:催化裂解、异构和环化等功能。 催化加氢 H2 + 2 M ↔ 2 H-M

催化脱氢

催化裂解、异构和环化等反应在酸性载体的酸中心,经过正碳离子的中间体来完成。 双功能催化剂的示意图

正庚烷 烯烃 异烯烃 异庚烷 脱氢 异构 加氢

5.5 烧结问题

晶粒生长的两种机理: 1)Ostwald熟化:指若有两个粒子A、B,原子自A分离移向B使B生长; 2)Brown运动:指单个晶粒沿表面迁移互相合并而生长。 影响烧结的因素: 1)气氛:H2、O2和He气氛下,负载金属晶粒的烧结行为不同。 在氧气气氛下,673K-773K范围内可以增加Pt在Al2O3的分散度,归因于挥发性不高的金属氧化物的生成。 2)金属和载体的本性。 熔点高的金属比熔点低的金属难烧结; 金属-金属键能与金属-载体键合能量的相对强弱对晶粒生长有很大影响; 一般而言,随温度升高和时间延长,烧结程度加重。在H2气氛下,所有金属都遵从这种模式。