第二节 叶绿体与光合作用 一、形态与结构 在高等植物中叶绿体象双凸或平凸透镜状,长径5~10um,短径2~4um,厚2~3um。高等植物的叶肉细胞一般含50~200个叶绿体,可占细胞质的40%,叶绿体的数目因物种细胞类型,生态环境,生理状态而有所不同。 在藻类中叶绿体形状多样,有网状、带状、裂片状和星形等等,而且体积巨大,可达100um。

Slides:



Advertisements
Similar presentations
第五章 糖代谢紊乱 中国医科大学第一临床学院 赵 敏. 主要内容 糖代谢紊乱的实验室检查 概 述.
Advertisements

质膜的流动镶嵌模型必修 1P30 细胞壁:成分、特点、功能成分、特点、功能 细胞膜 细胞质 细胞核 结构 ↓ 结构特点?实例? 5+3 P14 ↓ 功能特点(生理特性)、实验、实例 5+3 P15 ↓实验、 功能 P15 细胞溶胶 细胞器:细胞器:每种细胞器的结构和功能 结构: 功能: 5 动物、植物细胞的比较;原核、真核细胞的比较原核、真核细胞的比较.
浙江省普陀中学 张海霞 例谈高中生物 一轮复习有效性的提高 一轮复习有效性的提高. 高三生物一轮复习目标? 1 、知识: 提高审题能力 强化、突出主干知识。 易化、突破难点知识。 细化、整理基础知识。 2 、能力: 提高解题技巧 提高表达能力.
狂犬病 狂犬病晚期的犬. 一、狂犬病病原 : 狂犬 病毒属于弹状病毒, 75×180nm 大小,外层为含脂 质的囊膜,内部为含核蛋白的 核心,对脂溶剂敏感,为单链 RNA 病毒。病毒主要存在于感 染动物的唾液和脑组织。 狂犬病病毒结构.
模拟四生物试题讲评 最高分 牛婷婷 赵春军贾瑞军 最高分 重点 军检 普通 不过线 一、试卷的整体评价与分析 1 、考情分析.
氨基酸转换反应 ( 一 ) 血液中转氨酶活力的测定 一. 目的 : 了解转氨酶在代谢过程中的重要作用及其在临 床诊断中的意义, 学习转氨酶活力测定的原理和方 法。 二. 原理 : 生物体内广泛存在的氨基转换酶也称转氨酶, 能 催化 α – 氨基酸的 α – 氨基与 α – 酮基互换, 在氨基酸 的合成和分解尿素和嘌呤的合成等中间代谢过程中.
3-1 食物中的養分與能量 趣味科學實驗:膨糖的製作 3-2 酵素 重要性 可改變代謝作用反應進行的快慢 成分 蛋白質 影響因素
血液的生物化学 Hemal Biochemistry.
矿物质与畜禽营养 项目目标 理解矿物质的营养原理;能应用矿物质的营养特点,预防和治疗畜禽矿物质元素缺乏症
第5章 细胞的能量供应和利用 细胞中每时每刻都进行着许多化学反应,统称为细胞代谢。.
生物 第二章 植物的營養器官與功能 第二章第1節 根、莖和葉的構造.
专题二 新陈代谢 植物新陈代谢 动物新陈代谢 微生物新陈代谢.
103-2公證法第四次 大面授補充資料 鄭惠佳老師.
第三章 植物的光合作用 教师:李侠 学院:生命科学学院 《植物物生理学》
第十章 酶工程技术 第一节 酶的发酵生产 第二节 酶的分离纯化 第三节 酶分子的改造.
第五章 微生物与发酵工程.
第六章 细胞的能量转换 ——线粒体和叶绿体 线粒体和叶绿体是细胞内两个能量转换细胞器,它们能高效地将能量转换成ATP。线粒体广泛存在于各种真核细胞,而叶绿体仅存在于植物细胞中。   它们的形态结构都呈封闭的双层结构,内膜都演化为极其扩增的特化结构,并在能量转换中起主要作用。
全球暖化、水污染、空氣污染.
高考生物第一轮复习课件 2017年3月14日星期二.
动物细胞工程 儋州市一中 金兆娜.
课时2 DNA的结构与复制 一、高考要求 内容标准及等级要求 学习要求 概述DNA分子结构的主要特点(B) 说出DNA分子的基本单位
本文件不代表官方立場,且作者已盡力確保資料的 準確性,惟任何未經授權擅自使用本資料所造成的損害,作者不負賠償責任。
運動與養生 能量精氨酸的妙用 飛躍經理林峻賢.
生命的结构基础和细胞工程 一、生物膜系统的结构和功能 1.细胞膜的化学组成
2016生物高考应考策略 漳州市普通教育教学研究室 庄啸林.
看考题 谈复习 年高考中光合作用相关考题解析
一轮复习 细胞的增值.
生物氧化.
细胞代谢专题突破 黄岛实验中学 王玉美.
生物技术实践重要考点有:果酒和果醋的制作;腐乳的制作;制作泡菜;微生物的实验室培养;土壤中分解尿素的细菌的分离;分解纤维素的微生物的分离;菊花的组织培养;月季的花药培养;植物芳香油的提取;胡萝卜素的提取。 高考命题的切入点有:①果酒和果醋的制作原理和过程;②培养基的种类、营养要求及配制方法;③无菌技术的内容及方法;④分离纯化微生物的研究思路、方法;⑤腐乳的制作方法;⑥植物组织培养的原理、过程和影响因素;⑦植物芳香油的提取方法及流程。
1.还原糖 2.脂 肪 3.蛋白质 10叶绿素 4.质流动 5.分 裂 6.酶温度 7.酶- PH 8.酶效率 9.酶水解 11.分 离 12.复 原 13.取DNA.
糖代谢中的其它途径.
中枢兴奋药-酰胺类及其他类.
用科学方法进行高三生物学复习.
病原:痘病毒属于痘病毒科、脊椎动物痘病毒亚科,该亚科现有8个属,各属成员对动物的致病作用有明显的差异,但它们构造差异不大。
寻找生命的螺旋 深圳市育才中学 黄俊芳.
第七章 蛋白质的酶促降解和氨基酸代谢.
第九章 生物氧化 ---电子传递与氧化磷酸化
第 八 章 蛋白质的分解代谢.
13-14学年度生物学科教研室总结计划 2014年2月.
第六章 科学观察与科学实验.
必修1 分子与细胞 第二章 第三节 细 细胞溶胶 内质网 胞 核糖体 质 高尔基体 线粒体 第一课时 浙江省定海第一中学 黄晓芬.
落实基础 提升能力 ——高三生物高效备考30天 2013、5.
以不变应万变 ——回顾14 展望15 浙江省江山中学 周小雄 2014年11月 2日.
· 全球变暖 · 臭氧的破坏与保护 · 酸雨危害与防治
成才之路 · 生物 人教版 · 必修1 路漫漫其修远兮 吾将上下而求索.
第16章 血液的生物化学 Hemal Biochemistry.
生 物 氧 化 Biological Oxidation
第五章 植物的光合作用 第一节 光合作用的概念和意义.
生化Ch21 partIII 重點整理 生科2A 0993B013許嘉珊 0993B035張以潔.
第 八 章 核 苷 酸 代 谢 Metabolism of Nucleotides.
三、 氧化磷酸化 代谢物脱H经呼吸链传给O2 生成H2O 的同时释放能量,使ADP磷酸化生成ATP的过程,称为氧化磷酸化。
第三部分 细胞的能量供应和利用 第1课 酶和ATP.
第六章 线粒体与叶绿体.
維持生命現象的能量.
第三节 微生物的耗能代谢(生物固氮) 一、固氮微生物 二、固氮酶 三、影响固氮作用的主要因素.
CH5 能量與生命 馮禮君.
第10讲 光合作用的探究历程与基本过程 2017备考·最新考纲 1.光合作用的基本过程(Ⅱ)。2.实验:叶绿体中色素的提取和分离。
第八章 叶绿体 chloroplast.
光合作用的过程 O2 2C3 H2O CO2 [H] C5 ATP ADP+Pi 多种酶 光解 固 定 还 原 光能 吸收 酶 酶
光合作用與呼吸作用.
1.ATP的结构: A-P~P~P 高能磷酸键 ADP+ Pi+ 能量 酶 磷酸基团 腺苷.
基于高中生物学理性思维培养的实践性课例开发
能量之源—光与光合作用 制作者:靖江市刘国钧中学 薛晓燕.
基因指导蛋白质的合成 淮安市洪泽湖高级中学:王建友. 基因指导蛋白质的合成 淮安市洪泽湖高级中学:王建友.
第三節  光合作用與呼吸作用.
第3讲 能量之源——光与光合作用.
生化Ch21 partIII 重點整理 生科2A 0993B013許嘉珊 0993B035張以潔.
光合作用.
Tel: 环境微生物学 侯森 暨南大学环境学院 Tel:
Presentation transcript:

第二节 叶绿体与光合作用 一、形态与结构 在高等植物中叶绿体象双凸或平凸透镜状,长径5~10um,短径2~4um,厚2~3um。高等植物的叶肉细胞一般含50~200个叶绿体,可占细胞质的40%,叶绿体的数目因物种细胞类型,生态环境,生理状态而有所不同。 在藻类中叶绿体形状多样,有网状、带状、裂片状和星形等等,而且体积巨大,可达100um。 叶绿体由叶绿体外被(chloroplast envelope)、类囊体(thylakoid)和基质(stroma)3部分组成,叶绿体含有3种不同的膜:外膜、内膜、类囊体膜和3种彼此分开的腔:膜间隙、基质和类囊体腔。

(一)外被 叶绿体外被由双层膜组成,膜间隙为10~20。外膜的渗透性大,核苷、无机磷、蔗糖等许多细胞质中的营养分子可自由进入膜间隙。 内膜对通过物质的选择性很强,CO2、O2、Pi、H2O、磷酸甘油酸、丙糖磷酸,双羧酸和双羧酸氨基酸可以透过内膜,ADP、ATP已糖磷酸,葡萄糖及果糖等透过内膜较慢。 蔗糖、C5糖双磷酸酯,C糖磷酸酯,NADP+及焦磷酸不能透过内膜,需要特殊的转运体(translator)才能通过内膜。

(二)类囊体 是单层膜围成的扁平小囊,沿叶绿体的长轴平行排列。膜上含有光合色素和电子传递链组分,又称光合膜。 许多类囊体叠在一起构成基粒,组成基粒的类囊体,叫做基粒类囊体,构成基粒片层(grana lamella)。基粒直径约0.25~0.8μm,由10~100个类囊体组成。每个叶绿体中约有40~60个基粒。 贯穿在两个或两个以上基粒之间的没有发生垛叠的类囊体称为基质类囊体,或基质片层(stroma lamella)。 类囊体膜的主要成分是蛋白质和脂类(60:40),脂类中的脂肪酸主要是不饱含脂肪酸(约87%),具有较高的流动性。光能向化学能的转化是在类囊体上进行的,类囊体膜的内在蛋白主要有细胞色素b6/f复合体、质体醌(PQ)、质体蓝素(PC)、铁氧化还原蛋白、黄素蛋白、光系统Ⅰ、光系统Ⅱ复合物等。

(三)基质 是内膜与类囊体之间的空间,主要成分包括:碳同化相关的酶类:如RuBP羧化酶占基质可溶性蛋白总量的60%。叶绿体DNA、蛋白质合成体系:如,ctDNA、各类RNA、核糖体等。一些颗粒成分:如淀粉粒、质体小球和植物铁蛋白等。

叶绿体的形态结构

叶绿体功能示意图

二、叶绿体的光合作用 (一)光合色素 1.光合色素 光合作用是能量及物质的转化过程。首先光能转化成电能,经电子传递产生ATP和NADPH形式的不稳定化学能,最终转化成稳定的化学能储存在糖类化合物中。分为光反应(light reaction)和暗反应(dark reaction)。 (一)光合色素 1.光合色素 类囊体中含两类色素:叶绿素和类胡萝卜素,通常比例约为3:1,chla与chlb也约为3:l,全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。

2.集光复合体(light harvesting complex) 由大约200个叶绿素分子和一些肽链构成。大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。 3.光系统Ⅱ(PSⅡ) 吸收高峰为波长680nm处,又称P680。至少包括12条多肽链。位于基粒与基质非接触区域的类囊体膜上。包括一个集光复合体(light-hawesting comnplex Ⅱ,LHC Ⅱ)、一个反应中心和一个含锰原子的放氧复合体(oxygen evolving complex)。

4.光系统Ⅰ(PSI) 能被波长700nm的光激发,又称P700。包含多条肽链,位于基粒与基质接触区和基质类囊体膜中。由集光复合体Ⅰ和作用中心构成。结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外,其它叶绿素都是天线色素。三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的4Fe-4S。 5.细胞色素b/f复合体(cyt b/f complex) 可能以二聚体形成存在,每个单体含有四个不同的亚基。细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基Ⅳ(被认为是质体醌的结合蛋白)。

叶绿体类囊体膜的结构图解

集光复合体 天线色素: 反应中心色素: 叶绿素b 大部分叶绿素a, 胡萝卜素和叶黄素等 一种特殊状态的叶绿素a分子组成;分为PS I中心色素(最大吸收峰 700nm)和PS II中心色素(最大吸收峰680nm) 集光复合体

光系统中的天线复合物和反应中心(光合作用单位) 一个中心色素分子,一个原初电子供体,一个原初电子受体

叶绿素分子结构

(二)光合作用(原初反应,电子传递和光合磷酸化,暗反应) 1、原初反应 光能被捕光色素分子吸收、传递至反应中心、光化学反应、电荷分离(光能转变为电能)。

2、电子传递和光合磷酸化 (1)电子传递 P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z得到电子而还原;Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。 2H 2O→O2 + 4H+ + 4e- 同时去镁叶绿素将电子传给D2上结合的QA,QA又迅速将电子传给D1上的QB,还原型的质体醌从光系统Ⅱ复合体上游离下来,另一个氧化态的质体醌占据其位置形成新的QB。质体醌将电子传给细胞色素b6/f复合体,同时将质子由基质转移到类囊体腔。电子接着传递给位于类囊体腔一侧的含铜蛋白质体蓝素(plastocyanin, PC)中的Cu2+,再将电子传递到光系统Ⅰ 。

P700被光能激发后释放出来的高能电子沿着A0→ A1 →4Fe-4S的方向依次传递,由类囊体腔一侧传向类囊体基质一侧的铁氧还蛋白(ferredoxin,FD)。最后在铁氧还蛋白-NADP还原酶的作用下,将电子传给NADP+,形成NADPH。失去电子的P700从PC处获取电子而还原。 以上电子呈Z形传递的过程称为非循环式光合磷酸化,当植物在缺乏NADP+时,电子在光系统内Ⅰ流动,只合成ATP,不产生NADPH,称为循环式光合磷酸化。

捕捉光能同时将光能转换为电能 光系统I和光系统II核心复合物示意图

光合过程中氧化还原电势的变化

两个光系统的协同作用

(2)光合磷酸化(循环式和非循环式两种) 一对电子从P680经P700传至NADP+,在类囊体腔中增加4个H+,2个来源于H2O光解,2个由PQ从基质转移而来,在基质外一个H+又被用于还原NADP+,所以类囊体腔内有较高的H+(pH≈5,基质pH≈8),形成质子动力势,H+经ATP合成酶,渗入基质、推动ADP和Pi结合形成ATP。 机制:ATP合成酶,即CF1-F0偶联因子,结构类似于线粒体ATP合酶。CF1同样由5种亚基组成α3β3γδε的结构。CF0嵌在膜中,由4种亚基构成,是质子通过类囊体膜的通道。

叶绿体的ATP合成酶结构示意图

叶绿体类囊体膜中进行光合磷酸化的图解

叶绿体类囊体膜上进行光合磷酸化

(三)暗反应 C3途径(C3 pathway):亦称卡尔文 (Calvin)循环。CO2受体为RuBP,最初产物为3-磷酸甘油酸(PGA)。 C4途径(C4 pathway) :亦称哈奇-斯莱克(Hatch-Slack)途径,CO2受体为PEP,最初产物为草酰乙酸(OAA)。 景天科酸代谢途径(Crassulacean acid metabolism pathway,CAM途径):夜间固定CO2产生有机酸,白天有机酸脱羧释放CO2,进行CO2固定。

碳固定的循环

类囊体膜上光合过程中的电子流动

循环式(Fd-Cytbf-Pc)和非循环式(H2O-PO; PO-Cytbf)光合磷酸化