Introduction to Electronic Systems (电路基础)

Slides:



Advertisements
Similar presentations
胸痛中心的时间流程管理 上海胸科医院 方唯一.
Advertisements

學歷:1.國立台灣師範大學工業教育系(畢業) 2.國立台灣師範大學教育研究所(結業) 3.國立台北科技大學技術及職業教育研究所(碩士)
Basic concepts of structural equation modeling
十五條佛規 後學:張慈幸
第十九课 旅行.
第五章 面试方法及应用.
§2-9 节点分析法 节点分析法(node-analysis method)的基本指导思想 何谓节点电压(node voltage)?
1、原理电路图的设计 2、实验数据表格 3、教师签字有效,和《实验报告》 一起交。 实验《预习报告》要求: 一班赶紧去约实验一(第6周做)
Chap. 4 Techniques of Circuit Analysis
第3章 电路分析的基本方法 3.1 支路电流法 3.2 网孔电流法 3.3 节点电压法 3.4 回路分析法和割集分析法
Systematic Analysis Methods
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
XI. Hilbert Huang Transform (HHT)
3-3 Modeling with Systems of DEs
-Artificial Neural Network- Adaline & Madaline
數位電路導論 Introduction to Circuits Theory and Digital Electronics
Population proportion and sample proportion
實 驗 研 究 法 多因子實驗設計 指導老師:黃萬居教授 學生:陳志鴻 m
Differential Equations (DE)
Chap. 9 Sinusoidal Steady-State Analysis
非線性規劃 Nonlinear Programming
附加内容 “AS”用法小结(2).
§5.6 Hole-Burning and The Lamb Dip in Doppler- Broadened Gas Laser
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
附加内容 “AS”用法小结(1).
3.3 支路法 总共方程数 2 b 1、概述 若电路有 b 条支路,n 个节点 求各支路的电压、电流。共2b个未知数
HLA - Time Management 陳昱豪.
Chap. 2 Circuit Elements Contents Objectives
Mechanisms and Machine Theory.
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
Chap. 3 Simple Resistive Circuits
Short Version : 25. Electric Circuits 短版 : 25. 電路
普通物理 General Physics 31 - Alternating Fields and Current
Fundamentals of Physics 8/e 31 - Alternating Fields and Current
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
Formal Pivot to both Language and Intelligence in Science
变频器和滤波器 分类和应用.
消費者偏好與效用概念.
Chapter 8 Thermodynamics of High-Speed Gas Flow (第8章 气体和蒸气的流动)
實驗五 截波電路與箝位電路 實驗目的 瞭解何謂截波電路與箝位電路及其差異。 能預測一個直流偏壓對箝位電路之影響。 電子學實驗 陳瓊興編.
資料結構 Data Structures Fall 2006, 95學年第一學期 Instructor : 陳宗正.
普通物理 General Physics 21 - Coulomb's Law
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
Mechanics Exercise Class Ⅰ
Guide to a successful PowerPoint design – simple is best
Safety science and engineering department
计算机问题求解 – 论题 算法方法 2016年11月28日.
高考应试作文写作训练 5. 正反观点对比.
Q & A.
回顾: 支路法 若电路有 b 条支路,n 个节点 求各支路的电压、电流。共2b个未知数 可列方程数 KCL: n-1
Nucleon EM form factors in a quark-gluon core model
磁共振原理的临床应用.
Mechanics Exercise Class Ⅱ
虚拟语气(1).
动词不定式(6).
5. Combinational Logic Analysis
电路分析基础 2019/6/22.
Class imbalance in Classification
受控電源.
Example for CIC Report CIS-I.
二项式的分解因式 Factoring binomials
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
Significant Figures 有效數字
第九章 基本交流電路 9-1 基本元件組成之交流電路 9-2 RC串聯電路 9-3 RL串聯電路 9-4 RLC串聯電路
Hybrid fractal zerotree wavelet image coding
Presentation transcript:

Introduction to Electronic Systems (电路基础) 信息与通信工程学院 梁 栋

课 程 简 介 课程信息 教学安排 所获奖项及资助 英文名称: Introduction to Electronic Systems 中文名称:电子系统(电路基础) 学 分: 3学分 网 站: http://gerhut.net/ies/ 教学安排 授课对象:国际学院电信工程及管理、电子商务及法 律本科一年级学生 授课时间:春季学期前12周讲理论,后4周安排实验 教 材:Introductory Circuits for Electrical and Computer Engineering,张民改编,电子工业出版社,2009年 所获奖项及资助 2007年成为国家级双语教学示范课程 2007年获得原电信工程学院“优秀教学团队”称号

课 程 主 要 内 容 Chap1. Circuit Variables and Circuit Elements Chap2. Some Circuit Simplification Techniques Chap3. Techniques of Circuit Analysis Chap4. The Operational Amplifier Chap5. The Natural and Step Response of RL and RC Circuits Chap6. Natural and Step Response of RLC Circuits Chap7. Sinusoidal Steady-State Analysis Chap8. Balanced Three-Phase Circuits

Chap 3 Techniques of Circuit Analysis Part II Node Voltage Analysis Corresponding to Chap. 3.3-3.4 in textbook

Trace of Our Footstep Up to now, we have learned 4 methods to analyze resistive DC circuits KCL and KVL (In Chap 1) Source Transformation (In Chap 2) Superposition (In Chap 2) Mesh-Current Analysis (In Chap 3) Today we will introduce a new method Node Voltage Analysis

Outline of Node Voltage Analysis Two Concepts Reference node Node Voltage Principle of Node Voltage Analysis 4-step method Utilization of Node Voltage Analysis Circuits with only Current Sources Circuits with Current and Voltage Sources Circuits with Dependent Sources

Part 1 Two concepts

ground or reference symbol Reference Node (参考节点) Are these the same circuits? For convenience of analysis, we designate one node as the reference node assumed to be connected to ground. Node c in this case. or ground or reference symbol Ground represents the zero reference Since reference node is arbitrarily selected, it is not necessarily the lowest voltage in the circuit.

Node Voltage (节点电压) va a The node voltage is the voltage difference between the respect node to the reference. Also refer to textbook in p60 a va For node a, the node voltage va is equal to the voltage across of R2.

Part 2 A simple example to introduce the principle of Node Voltage Analysis

4-step method for Node Voltage Analysis Step 1. Identify essential nodes Essential node a Essential nodes Reference nodes Essential node c Reference node back

4-step method for Node Voltage Analysis Step 2. Express currents as a function of node voltages for each essential node (except for the reference node) va is Step 3. Apply KCL at the essential nodes except for the reference node back

4-step method for Node Voltage Analysis Step 4. Solve equations to calculate node voltages back

NODE a (Essential node) About trivial nodes We can also apply KCL at trivial nodes and obtain the same results. NODE a (Essential node) a a b b NODE b (Trivial node) By substitution, the same equation is achieved After all, trivial node analysis is not necessary for consideration of minimizing equation numbers.

General steps of Node Voltage Analysis STEPS TO THE SOLUTION Step 1: Identify nodes Example Step 2: Express currents as a function of node voltages Example Step 3: Apply KCL at each essential node except for reference node Example Step 4: solve the resulting n–1 simultaneous linear equations for the voltages where n is the number of essential nodes Example

Part 3 Utilization of Node Voltage Analysis

Utilization of Node Voltage Analysis 3 scenarios I: Circuits with only Current Sources II: Circuits with Current and Voltage Sources III: Circuits with Dependent Sources

Case1. Circuits with only Current Sources Example V1=? V2=?

Circuits with only Current Sources Step 1: Identify nodes 1 2 3 3

Circuits with only Current Sources Step 2: Express currents as a function of node voltages I3 G3(V1-V2) G1V1 3 3

Circuits with only Current Sources Step 3: Apply KCL at each essential node except for reference node I3 I1 G3(V1-V2) G1V1 KCL applied to each non-grounded node gives: for node 1 self conductance at node 1 (自电导) mutual conductance between nodes 1 & 2 (互电导)

Circuits with only Current Sources G3(V2-V1) I2 G2V2 for node 2 self conductance at node 2 mutual conductance between nodes 2 and 1

Circuits with only Current Sources Step 4 solve the resulting n –1 simultaneous linear equations for the voltages where n is the number of essential nodes (n=2) Also can be written in matrix form Note: Self conductance occupy the main diagonal Mutual conductance occupy the off-diagonal with minus sign (-) In the right side, the positive sigh used for in-current

The comparison between KCL&KVL and Node Voltage Analysis 基尔霍夫法 未知数包括所有元件的电流和电压 方程组由KVL、KCL和欧姆定律三类方程组成 缺点:未知数 个数和方程个 数较大 网孔电流法 未知数仅包括网孔电流 方程组仅包括KVL方程,其中各个支路的电压依据欧姆定律,用网孔电流来表示。 优点:未知数个数和方程个数大大下降 节点电压法 未知数仅包括节点电压 方程组仅包括KCL方程,其中各个支路的电流依据欧姆定律,用节点电压来表示。 优点:未知数个数和方程个数大大下降

Case 2. Circuit with Current and Voltage Sources 1. When the voltage source is connected directly to the ground. Note that va = vs and vb is the only unknown. We can apply KCL at node b to get:

A Similar Example Example 3.2 in Textbook p62 v1 v1

Super node Solution 2. When the voltage source is not connected to ground. Since we know the voltage between a and b, we can apply KCL to supernode ab as if it were a single node. We can apply KCL to node ab resulting in: Solving for vb.

Case 3. Circuit with Dependent Sources Express the controlling current or voltage in terms of the node voltages. so, Applying KCL at node b Substituting for vc and solving for vb.

Node Voltages or Mesh Currents? Planar circuits can usually be analyzed using either node voltages or mesh currents. When do we use one vs. the other method? In general whatever approach yields the smaller number of simultaneous linear equations is the best approach. Voltages sources especially dependent ones are easier with node voltages. Current sources are easier analyzed with mesh currents. Mesh currents seem to result in fewer sign errors.