第一章 细菌的形态和结构 原核细胞微生物指一大类呈细胞形态,仅有原始的类核,无核膜包裹,只存在裸露DNA,不进行有丝分裂,无细胞器的原始单细胞生物。 根据外表特征把原核生物分为几种类型: 细菌、蓝细菌、放线菌、螺旋体、支原体、立克次氏体、衣原体。

Slides:



Advertisements
Similar presentations
1 (二)细菌的特殊结构 1 、荚膜 某些细菌在其细胞壁外包绕一 层粘液性物质,厚度 ≥0.2 μm ,称 为荚膜;厚度< 0.2μm ,称为微荚 膜.
Advertisements

第二节 细胞核和细胞器. 教学目标 知识与技能 1 、知道细胞核和各种细胞器的结构和功能 2 、初步学会辩别原核细胞和真核细胞的实验技能 过程与方法 1 、用类比、归纳的方法,列表描述细胞核和各种 细胞器的结构和功能 2 、关注鉴别真核细胞与原核细胞的实验方法 情感态度与价值观 了解生物体结构与功能的统一性.
细菌的形态与结构. 细菌( bacterium ):是具有细胞壁和核质 的单细胞原核型微生物。 广义细菌包括:细菌、衣原体、支原体、 立克次体、螺旋体和放线菌 。
第一节、细胞膜 —— 系统的边界 1 、选择材料 : 1 、选择材料 : 2 、实验原理 : 人或其他哺乳动物成熟红细胞 渗透作用 3 、观察现象 : 可以看到近水的部分红细胞发生变化, 凹陷消失,细胞体积增大,很快细胞涨 裂,内容物流出。 一、实验:体验制备细胞膜的方法 5 、选材原因:动物细胞没有细胞壁,因此选择动物细.
细胞核的结构和功能 房山中学 慕红楠. 细胞核 核膜 核仁 染色质 哺乳动物成熟的红细胞没有细胞核。
第四节 RNA 的空间结构与功能. RNA 的种类和功能 核糖体 RNA ( rRNA ):核蛋白体组成成分 转移 RNA ( tRNA ):转运氨基酸 信使 RNA ( mRNA ):蛋白质合成模板 不均一核 RNA ( hnRNA ):成熟 mRNA 的前体 小核 RNA ( snRNA ):
植物生理 植物细胞生理基础 同工酶. 学习目标 Click to add title in here Click to add title n here  掌握同工酶的概念。  了解同工酶的意义。
微生物的种类 一、细胞型微生物 1、原核微生物:细菌、放线菌、立克次氏体、 支原体、衣原体、蓝细菌、螺旋体。
第一章 原核生物的形态、构造和功能 本章的学习目的与要求:
第一章 细菌的形态和结构Bacterial Morphology and Structure
REVIEW Q: Microorganism (Microbe)?
Chapter 1 Morphological structure and function of prokaryotic
第一章 微生物的形态结构和基本类群 非细胞型微生物:病毒属于此类。体积微小,能通过滤菌器。而且只能在活细胞内生长繁殖。
微 生 物 学 课件:教学文件服务系统:
第二章 细胞的统一性与多样性 细胞的基本概念 原核细胞与真核细胞 非细胞形态的生命体 ——病毒及其与细胞的关系.
Chap1 细菌 (bacteria).
原核微生物.
细胞核-系统控制中心.
第二章 原核生物 第一节 细菌 第二节 放线菌 第三节 丝状细菌 第四节 光合细菌 第五节 蓝细菌 1
知识 + 实践 = 能力不断提高.
细菌和真菌的分布.
实验七 霉菌个体、群体形态观察.
肺结核.
葡萄糖 合成 肌糖元 第六节 人和动物体内三大营养物质的代谢 一、糖类代谢 1、来源:主要是淀粉,另有少量蔗糖、乳糖等。
主题3 生命的结构基础 细胞是生物体结构和生命活动的基本单位,生物体的代谢活动几乎都在细胞内有条不紊的进行着。
五、作用于神经系统的受体拮抗剂 兴奋性氨基酸(EAA)受体拮抗剂 抑制性氨基酸受体受体拮抗剂 神经肽Y受体拮抗剂
生殖细胞.
第六节细菌和真菌的繁殖.
第一章:原核微生物形态结构 第一节细菌(bacteria) 第二节放线菌(actinomycetes)
微生物学与免疫学.
细胞核是遗传信息库.
细胞核练习.
问 题 探 讨 1.DNA的中文全名是什么? 2.为什么DNA能够进行亲子鉴定? 3.你还能说出DNA鉴定技术在其他方面的应用吗?
细胞核是遗传信息库.
第二节 细 菌 学校:二中附中 教师:徐廷.
22-1 DNA是主要的遗传物质.
第三十四章 抗病原微生物药物概论 [概述] 1. 抗病原微生物药:指对病原微生物具有抑制或杀灭作用,用于防治感染性疾病的一类化疗药物。包括抗生素和人工合成抗菌药。 2. 病原微生物:细菌、螺旋体、衣原体、支原体、立克次体、真菌、病毒等 。
医学微生物学 实验五.
微 生 物 学 2. 原核生物的形态、构造和功能 2.1 细菌 西北第二民族学院 细菌的结构 细胞膜
医学微生物学实验.
兽医微生物学 黑龙江八一农垦大学.
特异性免疫过程 临朐城关街道城关中学连华.
第一章 原核微生物.
微生物的形态、结构与分类 微生物可分为:无细胞结构真病毒、亚病毒;具有原核细胞结构的真细菌 (细菌、放线菌、蓝细菌、立克次氏体、支原体、衣原体)、古细菌;具有真核细胞结构的真菌(酵母菌、霉菌)、单细胞藻类、原生动物等。
第二章 原核微生物的形态结构与功能.
Chemistry and Life Science College 化学与生命科学学院 卜宁. 教材与参考资料 1. 周德庆( 2011 ):微生物学教程(第 3 版). 高等教育出版社 2. 沈萍( 2000 ):微生物学. 高等教育出版社 3. 闵航( 2005 ):微生物学. 浙江大学出版社.
Prokaryotic Cell Wall Cell Wall.
抗生素的作用机理.
医学微生物学 上海中医药大学病原生物学教研室 主讲:李玉虎.
ATP SLYTYZJAM.
第二章 细胞的基本功能 第一节 细胞膜的结构和物质转运功能 第二节 细胞的信号转导 第三节 细胞的电活动 第四节 肌细胞的收缩.
第三部分 补体及C反应蛋白测定 一、总补体活性的测定(溶血实验):
细胞的结构和功能 细胞是生物体结构和生命活动的基本单位,其结构包括细胞膜、细胞质、细胞核,细胞必须保持完整性,才能完成正常的各项生命活动.
第二章 基本知识概要 第一节 基本概念 一、生命活动的基本单位 二、细胞概念的一些新思考 1,有机体的组成和结构单位 2,代谢和功能的单位
第3章 细胞的基本结构 第2节 细胞器——系统内的分工合作.
雌性(2n) 雄性(2n) 精子(n) 卵子(n) 生殖 受精卵(2n) 个体发育 幼体 成体(2n) (减数分裂) 受精 作用 胚胎发育
超越自然还是带来毁灭 “人造生命”令全世界不安
细胞的基本结构 山东省实验中学生物组 张恩然.
第一节 土地利用对生态系统的干扰与生态重建.
Carbohydrate Metabolism
第三节 细胞核--系统的控制中心.
第十一章 配合物结构 §11.1 配合物的空间构型 §11.2 配合物的化学键理论.
本次实验的内容 实验五 细菌的简单染色法 实验六 细菌的革兰氏染色法 实验七 细菌的芽胞染色法 实验八 细菌的荚膜染色法.
有关“ATP结构” 的会考复习.
光合作用的过程 主讲:尹冬静.
第 二 章 遗传的细胞学基础.
Chapter 1 Morphological structure and function of prokaryotic
基因信息的传递.
化学治疗药物 Pharmacology.
细胞分裂 有丝分裂.
Presentation transcript:

第一章 细菌的形态和结构 原核细胞微生物指一大类呈细胞形态,仅有原始的类核,无核膜包裹,只存在裸露DNA,不进行有丝分裂,无细胞器的原始单细胞生物。 根据外表特征把原核生物分为几种类型: 细菌、蓝细菌、放线菌、螺旋体、支原体、立克次氏体、衣原体。

一、细菌的大小 1. 单位----μm 2. 各种细菌的大小 球菌: 0.5-2.0μm, 一般1.0μm 3.同种细菌的大小存在一定差异 细菌的大小,以生长在适宜的温度和培养基中的幼龄培养物为标准。

巨大芽孢杆菌 颤蓝菌属 大肠杆菌 肺炎球菌 嗜血流感菌 纳米细菌

二、细菌的外形和排列 外形:球状、杆状和螺旋状。 据外形和排列分为:球菌、杆菌和螺旋菌。

形态 球形 杆形 螺旋形 其它形状 丝状 三角形 方形等

球菌(Sphericalcoccus)

杆菌 (bacillus) 棒状杆菌

杆菌形态 1)长:呈丝状(猪丹毒杆菌) 短:卵圆形(球杆菌) 2)一端膨大,呈棒状(棒状杆菌) 3)形成侧支或分支(分支杆菌) 4)菌体两端:多为钝圆(巴氏杆菌) 少数为平截(炭疽杆菌) 极少数呈梭状(破伤风梭菌)

杆菌形态示例 猪丹毒杆菌

杆菌形态示例 巴氏杆菌

杆菌形态示例 炭疽杆菌(电镜)

杆菌形态示例 诺维氏梭菌

杆菌形态示例 破伤风梭菌

螺旋菌(spirilla):弧菌、螺菌

螺旋状菌示例 弧菌 螺菌

幽门螺杆菌

螺旋体 是一类细长、柔软、弯曲呈螺旋状、运动活泼的单细胞型微生物。 在生物学上的位置介于细菌与原生动物之间。

衰老型和多形性 衰老型:细菌在不良环境或老龄期,会出现和正常形状不一样的个体。 多形性:在适宜的正常环境中生长,其形状也不一致。这种现象称为多形性,如嗜血杆菌。

三、细菌的构造 基本构造 特殊构造

一般构造 特殊构造

细菌细胞结构模式图

(一)细胞壁 细菌细胞最外层坚韧且具有高度弹性的结构。 组成成份:肽聚糖、磷壁酸、脂多糖、磷脂、蛋白质和脂蛋白。 主要功能:保持一定的形态和保护细菌,同时与革兰氏染色特性、抗菌药物的敏感性、细菌的致病性和抗原性有关。

G+ 和G-的细胞壁的构造不同

G+与G-细胞壁的比较 G+细胞壁 G-细胞壁

G+细菌和G-细菌细胞壁的比较

G+与G-细胞壁的比较 细胞壁 G+菌 G-菌 强度 较坚韧 较疏松 厚度 20-80 10-15 肽聚糖层数 多达50层 1-2层 肽聚糖含量 占细菌干重50-80% 占细菌干重5-20% 糖类含量 45% 15-20% 脂类含量 1-4% 11-22% 磷壁酸 + - 外膜

补充资料:革兰氏染色示例 G+ G- (大肠杆菌) (链球菌)

补充资料:革氏染色与细胞壁结构的关系 G+菌细胞壁,其脂类含量较多,而肽聚糖较少,以95%酒精脱色时,脂类被溶解,使得细胞壁孔隙变大;肽聚糖因95%酒精处理而使之孔隙缩小,但肽聚糖含量较少,细胞壁孔隙缩小有限,故能让结晶紫与碘形成的紫色染料复合物被95%酒精洗脱出细胞壁外,而后来为红色的复染剂着色成为红色。 G-菌细胞壁所含脂类少,肽聚糖多,经95%酒精脱色时其细胞壁孔隙缩小到不易让结晶紫(或龙胆紫)与碘形成的紫色染料复合物洗出细胞壁外,而被染为紫色。当细胞壁失去其结构完整性时(如自溶的、老龄的、已死的细菌或分离出来的细胞壁),亦同时失去其渗透的完整性,革兰氏阳性菌就能染成革兰氏阴性反应。

Gram Stain Step Gram negative Gram positive Heat/Dry Crystal violet stain Iodine Fix Alcohol de-stain Safranin stain

补充资料:革氏染色主要步骤及呈色原理 1.结晶紫/碘液 2.酒精 3.复红 脂类 细胞壁 被溶解 G- G+

补充资料:革兰氏染色主要步骤及呈色模拟 1.结晶紫/碘液 2.酒精 3.复红 溶解后形成空洞 细胞壁 脂肪颗粒 G- G+

补充资料:青霉素的杀菌原理 青霉素和先锋霉素(或头孢菌素)等抗生素,能抑制细菌细胞壁肽聚糖的合成,对某些细菌有抑菌和杀菌作用。虽然细菌细胞壁都有肽聚糖成分,但由于细胞壁结构不同,这些药物可以直接扩散入革兰氏阳性菌的细胞壁内,这类细菌对这些药物就比较敏感,而革兰氏阴性菌细胞壁的肽聚糖层,有三层外胞壁围绕,药物不易扩散入内,对这些药物就不那么敏感。霉形体和细菌的L型没有细胞壁,也就没有细胞壁上的肽聚糖成分,所以对青霉素就不敏感。这都说明细菌细胞壁的化学组成、结构与细菌的抗药性有关。

缺壁细菌(Cell wall deficient bacteria) 实验室中形成 自然界长期进化中形成:支原体 自发缺壁突变:L型细菌 人工方法去壁 彻底除尽:原生质体 部分去除:球状体

1972年Singer和Nicolson提出的液态镶嵌模型 (二)细胞膜 cell membrane 紧贴在细胞壁内侧一层由磷脂、蛋白质及少量多糖组成的柔软、致密、富有弹性的半透性薄膜; 主要功能: 选择性的吸收和运送物质 是细菌细胞能量转换的重要场所 传递信息 参与细胞壁的生物合成 细胞膜的结构 1972年Singer和Nicolson提出的液态镶嵌模型

整合蛋白 周边蛋白 极性头 非极性尾 磷 脂 双 分 子 层

细胞膜的生理功能 2003年美国科学家彼得·阿格雷和罗德里克·麦金农获得了诺贝尔化学奖——表彰他们在细胞膜通道方面做出的贡献。

阿格雷 阿格雷得奖是由于发现了细胞膜水通道。 目前,科学家发现水通道蛋白广泛存在于动物、植物和微生物中,人体内的水通道有11种。 如在人的肾脏中,通常一个成年人每天要产生170升的原尿,这些原尿经肾脏肾小球中的水通道蛋白的过滤,其中大部分水分被人体循环利用,最终只有约1升的尿液排出人体。

麦金农 麦金农的贡献主要是在细胞膜离子通道的结构和机理研究方面。 1988年,他利用X射线晶体成像技术获得了世界第一张离子通道的高清晰度照片; 它可以让科学家观测到离子在进入离子通道前、进入离子通道中和进入离子通道后的状态。

阿格雷和麦金农对水通道和离子通道的研究意义重大; 很多疾病,如一些神经系统疾病和心血管疾病就是由于细胞膜通道功能紊乱造成的; 对细胞膜通道的研究可以帮助科学家寻找具体的病因,并研制相应的药物; 利用不同的细胞膜通道,可以调节细胞的功能,从而达到治疗疾病的目的。

(三)间体 细胞膜凹入细胞浆内形成囊状结构。 可能的功能: 与细菌分裂及核质的复制密切相关 和细胞壁的合成有关 在芽胞的形成中起重要的作用 相当于线粒体的作用

Morphology of a gram-positive bacterial cell 间体 由细胞膜内褶形成的一种囊状结构,其内充满着层状或管状的泡囊; 多见于革兰氏阳性细菌,每个细胞含一个至数个,革兰氏阴性细菌中不甚明显; 着生部位可在表层或深层 表层与某些酶的分泌有关; 深层与DNA复制及细胞分裂有关。 Morphology of a gram-positive bacterial cell

间体图片

(四)细胞质(cytoplasm) 被细胞膜包围着的除核区以外的一切半透明、胶状、颗粒状物质的总称。 主要成分 水(约为80%) 核糖体 细胞内含物 与真核生物不同 细胞质不流动 核糖体是70S 内含物成分不同

细 胞 内 含 物 贮藏物 聚-β-羟丁酸(PHB) 碳源及能源类: 氮源类 磷源 磁小体 羧酶体 气泡 藻青素 藻青蛋白 (异染粒) 存在于少数水生螺菌属和嗜胆球菌属等趋磁细菌中,它有导向功能,即借鞭毛引导细菌游向最有利的泥、水界面微氧环境处生活。 细 胞 内 含 物 贮藏物 聚-β-羟丁酸(PHB) 碳源及能源类: 氮源类 磷源 磁小体 羧酶体 气泡 藻青素 藻青蛋白 (异染粒) 又叫羧化体,多存在于自养细菌中,在二氧化碳的固定中起关键作用。 其功能是调节细胞比重,以使其漂浮在最适水层获取光能、氧和营养物质。主要存在于蓝细菌中。

贮藏物的作用 它是微生物合理利用营养物质的一种调节方式; 它 以多聚体的形式存在,有利于维持细胞内环境的平衡,避免不适合的pH,渗透压等的危害; 它在细菌细胞中大量积累,是重要的自然资源。

PHB sulfur globules Polyphosphate granule

质粒(plasmid): 存在于胞浆中的一小段闭合环状双股DNA,是某些细菌染色体以外的遗传物质,能独立复制,带有遗传信息,控制细菌某些特点的遗传性状;但并非细菌生命活动所必需。 质粒的功能: 与抗药性有关 与有性接合有关 基因工程中作为目的基因载体

(五)核体或拟核(nucleoid) 一般有两种排列方式:一类是核体相当密实地处于菌体的中心或边缘区;另一类是较松散地排列

特殊构造 (一)荚膜 有些细菌在细胞壁的外面产生一种粘液样的物质包围整个菌体,用理化方法除去后并不影响菌体的生长代谢。荚膜的有无、厚薄与菌种遗传性有关,还与环境条件(特别是营养)密切相关。 一般在动物组织中或含大量血清或糖的培养基中容易形成。 大多数细菌的荚膜是多糖,少数是多肽。

图片:细菌的荚膜(电镜) G+菌荚膜 G-菌微荚膜

图片:炭疽菌的荚膜(瑞氏)

由菌落判断形成规律: 光滑型(S)或粘液型(M)菌落--有荚膜 粗糙型(R)菌落--(丢失荚膜)

功能: 抗吞噬 抗有害物质的损伤 抗干燥 具有抗原性(K抗原) 营养物质的储存及废物排出场所

(二)鞭毛(flagellum) 按生长情况可分为: 在菌体表面附有细长并呈波状弯曲的丝状物。 鞭毛蛋白(flagillin)、H抗原 单毛菌(monotrichate) 双毛菌(amphitrichate) 丛毛菌(lopotrichate) 周毛菌(Peritrichate)

鞭毛的着生方式 偏端丛生 两端丛生 偏端单生 两端单生 侧生 周生

破伤风梭菌的周身鞭毛

(三)菌毛(纤毛)(pilus) 许多G-菌和少数G+菌菌体表面存在着一种比鞭毛数量较多、更细、更短而直硬的毛发状细丝。 功能:与致病性有关(与运动无关)

粘连的功能; 以G-致病菌居多; 无基体构造,直接生于细胞膜上 性菌毛 多见于G-的雄性菌株 向雌性菌株传递DNA片段;

(四)芽胞/芽孢(spore) 某些细菌(G+菌)在一定条件下,能在菌体内形成的一个圆形或卵圆形小体。 只在动物体外才能形成,芽胞不是细菌的繁殖方式。

抗逆性极强的休眠构造(抗热、抗辐射、抗压等); 枯草芽孢杆菌,在沸水中可存活1小时; 肉毒梭状芽孢杆菌要经5-10h才被杀死; 芽孢的形态和着生位置 无繁殖功能;

能形成芽孢的细菌种类 Bacillus— Aerobic 需氧芽孢杆菌 Clostridium —Anaerobic 梭状芽孢杆菌

Bacillus subtilis 枯草杆菌

芽胞的抵抗力    细菌的芽胞具有较厚的芽胞壁和多层芽胞膜,结构坚实,含水量少,代谢极低,折光性强。对外界不良理化环境条件,比其繁殖体有坚强得多的抵抗力,特别能耐受高温、干燥和渗透压的作用。

芽胞着色力 使用普通的染色方法,染料不易渗透进芽胞内,不能使芽胞着色,未经着色的芽胞,因本身折光性强,在普通显微镜下,呈现为无色的空洞状。 芽胞着色力  使用普通的染色方法,染料不易渗透进芽胞内,不能使芽胞着色,未经着色的芽胞,因本身折光性强,在普通显微镜下,呈现为无色的空洞状。 应用特别强化的染色方法,可使芽胞着色,一经着色却又不易脱色。

芽孢的形成的意义: 芽孢形成的条件 干燥 营养缺乏 气体条件 耐高温、耐干燥、化学消毒剂、辐射等 在自然界存活时间长,成为某些传染病的重要传染来源。 芽孢形成的条件 干燥 营养缺乏 气体条件

研究芽孢的意义 菌种鉴定; 提高菌种的筛选效率,有利于菌种保藏; 衡量消毒灭菌手段的重要指标; 肉类:肉毒梭菌; 外科器材:破伤风梭菌和产气荚膜梭菌; 实验室和发酵工业:嗜热脂肪芽孢杆菌;