好氧生物处理——生物膜法.

Slides:



Advertisements
Similar presentations
竹南海濱沙地植物的介紹 苗栗縣竹興國小 李秋蜚. 海濱沙地的環境概況 1. 夏季烈日曝曬極乾旱,冬季寒冷 的東北季風極強勁 。 2. 海風吹拂鹽分高 。 3. 貧瘠 、 水分少 。
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
减慢食物变质的速度 减慢食物变质的速度.
影响药物吸收的生理因素.
第九章 厌氧生物处理 概述 原理 主要构筑物及工艺.
第四节 眼睛和眼镜.
第四單元 天氣與生活 4-1 觀測天氣.
碰撞 两物体互相接触时间极短而互作用力较大
第六章 环境污染物的生物净化方法.
第十章 生物技术与环境 生物圈2号 人类社会的发展创造了前所未有的文明,但同时也带来了许多生态环境问题。由于人口爆炸,自然资源的大量消耗,全球环境状况正急剧恶化:水资源短缺、土壤荒漠化、有毒化学品污染、臭氧层空洞、酸雨肆虐、物种的灭绝、森林的大面积消失等等。人类的生存和发展正面临严峻的挑战。所以这些迫使人类进行一场环境革命来拯救人类自身。
盲杖与盲杖技巧.
深床反硝化滤池 工艺简介 台州中昌水处理设备有限公司 2013年12月.
酿造业高浓度有机废水处理工艺 李小明 电话:
我国的水资源形势: 城市和农业缺水十分严重; 全国80%的水域,45%的地下水,90%以上的城市水域受到不同程度的污染。
5单元 染料废水的生物膜处理技术 5.1 生物膜法处理染料废水.
三种中国南海红树林内生真菌 次级代谢产物的研究
证券投资技术分析.
3.5.2 过氧化物交联 缩合交联的优点: 缩合交联的缺点: 如何来制备高强度的硅橡胶? 如:管材,垫圈。 基胶流动性好;易于封装,密封。
工艺改进提高生产效率 金属成型室 2013年5月 上海拖拉机内燃机有限公司.
第五章 生物膜法.
区级课题汇报 (初期) 汇报人:建平中学周宁医 2008年9月27日.
五味子 【来源】 木兰科植物五味子、华中五味子的成熟果实。药材习称“北五味子”、“南五味子”.
第一章 液压传动系统的基本组成 蓄能器 1 功用 (1)辅助动力源,短时大量供油 特点: 采用蓄能器辅助供油,可以减小泵的流量,电机的功率,降低系统的温升。
1、环境中直接影响生物生活的各种因素叫做 。它可以分为 和 两类 。
导入新课 由于几何光学仪器都是人眼功能的扩展,为了深入了解各类光学仪器,有必要从几何光学的角度了解人眼的构造。
低浓度基质下Anammox反应器 性能及颗粒化特性
第一章 商品 第一节 价值创造 第二节 价值量 第三节 价值函数及其性质 第四节 商品经济的基本矛盾与利己利他经济人假设.
人教版三年级语文 多媒体课件.
废水厌氧生物处理工程.
第七章 微生物在环境污染治理中的作用 环境监测与治理技术专业 田丹.
(一)UASB工艺的新进展.
第五章 水质污染的防治 5.1 水处理的方法概述 5.2 物理处理方法 5.3 化学处理方法 5.4 生物处理方法 5.5 城市生活污水处理系统.
程序的形式验证 - 简介 中国科学院软件研究所 张文辉 1.
                                                                                                                                                                
项目二 生活污水处理 天津渤海职业技术学院 环境工程系.
ACD/ChemSketch软件在有机化学教学中的简单应用
固定床反应器内的流体流动 催化剂的物理性状 比表面积 指每克催化剂的表面积,记为,单位为m2/g。
第十八章 污水的厌氧生物处理 第一节 概述 第二节 厌氧生物处理的基本原理 第三节 污水的厌氧生物处理方法 第四节 厌氧生物处理法的设计
Escherichia coli to decompose polluted water and sludge
§7.4 波的产生 1.机械波(Mechanical wave): 机械振动在介质中传播过程叫机械波。1 2 举例:水波;声波.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
青岛大东电子 环境监测资料
新型前处理技术替代铁系磷化和锌系磷 化 提供涂装结合力和耐蚀性 多金属处理:铁,锌, 铝 基材形成纳米级转化膜 浸泡和喷淋
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
氮循环 肖子聪.
实验4 三相交流电路.
一、驻波的产生 1、现象.
药物的跨膜转运.
第一节 土地利用对生态系统的干扰与生态重建.
福建安溪某污水处理厂工艺设计 答 辩 人: 班 级: 指导老师:.
廣翅蠟蟬.
第12章 化学汽相沉积( CVD) 化学气相沉积(Chemical Vapor Deposition, CVD)是通过气相物质的化学反应在基材表面上沉积固态薄膜的一种工艺方法。 CVD的基本步骤与PVD不同的是:沉积粒子来源于化合物的气相分解反应。 CVD的实现必须提供气化反应物,这些物质在室温下可以是气态、液态或固态,通过加热等方式使它们气化后导入反应室。
东区水质净化厂参观报告 ——沈天啸 环境科学与工程系.
第四章 缺 氧 概念:组织得不到氧气,或不能充分 利用氧气时,组织的代谢、功 能,甚至形态结构都可能发生 异常变化,这一病理过程称为 缺氧。
第15章 量子力学(quantum mechanics) 初步
光合作用的过程 主讲:尹冬静.
上海市东区水质净化厂参观报告. 邹镕坤
《工程制图基础》 第五讲 投影变换.
教育部增置國小圖書教師輔導與教育訓練計畫 圖書資訊利用教育教學綱要及教學設計小組 設計者:臺北市萬興國小曾品方老師
教育部增置國小圖書教師輔導與教育訓練計畫 圖書資訊教育教學綱要及教學設計小組 設計者:臺北市萬興國小 曾品方老師
HULUO Finance and Economics College
_01自己实现简单的消息处理框架模型 本节课讲师——void* 视频提供:昆山爱达人信息技术有限公司
高浓度二氧化硫尾气的回收和净化 一、利用SO2生产硫酸 SO2+1/2O2 钒催化剂 SO3 SO3+H2O H2SO4 二、工艺
本底对汞原子第一激发能测量的影响 钱振宇
第十七讲 密码执行(1).
插入排序的正确性证明 以及各种改进方法.
《智能仪表与传感器技术》 第一章 传感器与仪表概述 电涡流传感器及应用 任课教师:孙静.
上海东区水质净化厂参观 展示 制作人:吴淞 学号:
Presentation transcript:

好氧生物处理——生物膜法

主要内容 生物膜法基本原理 生物膜法的工艺特点 生物膜法的主要工艺

生物膜法的基本原理 生物膜法又称固定膜法,是与活性污泥法并列的一类废水好氧生物处理技术;是土壤自净过程的人工化和强化;与活性污泥法一样,生物膜法主要去除废水中溶解性的和胶体状的有机污染物,同时对废水中的氨氮还具有一定的硝化能力。

生物膜法的基本原理 1 生物膜的形成 前提条件: 起支撑作用、供微生物附着生长的载体物质:在生物滤池中称为滤料;在接触氧化工艺中成为填料;在好氧生物流化床中成为载体; 供微生物生长所需的营养物质,即废水中的有机物、N、P以及其它营养物质; 作为接种的微生物。

生物膜法的基本原理 生物膜的形成过程: 初步形成:含有营养物质和接种微生物的污水在填料的表面流动,一定时间后,微生物会附着在填料表面而增殖和生长,形成一层薄的生物膜。 生物膜的成熟:在生物膜上由细菌及其它各种微生物组成的生态系统以及生物膜对有机物的降解功能都达到了平衡和稳定。 生物膜从开始形成到成熟,一般需要30天左右(城市污水,20°C)

生物膜法的基本原理 生物膜的结构

生物膜法的基本原理 生物膜降解有机物的过程: 生物膜由好氧和厌氧两层组成,有机物的降解主要是在好氧层内进行。在生物膜内、外,生物膜与水层之间进行着多种物质的传递过程。空气中的氧溶解于流动水层中,从那里通过附着水层传送给生物膜,供微生物用于呼吸;污水中的有机污染物则由流动水层传递给附着水层,然后进入生物膜,并通过细菌的代谢活动而被降解。这样就使污水在其流动过程中逐步得到净化。微生物的代谢产物如H20等则通过附着水层进入流动水层,并随其排走,而C02及厌氧层分解产物如H2S、NH3以及CH4等气态代谢产物则从水层逸出进入空气中。

生物膜法的基本原理 2 生物膜的性质: 高度亲水,存在着附着水层; 微生物高度密集:这些微生物起着主要去除废水中的有机污染物的作用,形成了有机污染物——细菌——原生动物(后生动物)的食物链。

生物膜法的基本原理 成熟的生物膜一般都由厌氧膜和好氧膜组成,好氧膜是有机物降解的主要场所,一般厚度为2mm。 3 生物膜的更新与脱落 成熟的生物膜一般都由厌氧膜和好氧膜组成,好氧膜是有机物降解的主要场所,一般厚度为2mm。 厌氧膜的出现:生物膜厚度不断增加,氧气不能透入的内部深处将转变为厌氧状态; 厌氧膜的加厚:厌氧的代谢产物增多,导致厌氧膜与好氧膜之间的平衡被破坏;气态产物的不断逸出,减弱了生物膜在填料上的附着能力;成为老化生物膜,其净化功能较差,且易于脱落。 老化膜脱落,新生生物膜又会生长起来,新生生物膜的净化功能较强。

生物膜法的基本原理 4 生物膜法的运行原则: 减缓生物膜的老化进程; 控制厌氧膜的厚度; 加快好氧膜的更新; 尽量控制使生物膜不集中脱落。

生物膜法的工艺特点 1、微生物方面的特征 微生物种类多样化:① 相对安静、稳定的环境;② SRT相对较长;③ 丝状菌可以大量生长,无污泥膨胀之虞;④ 线虫类、轮虫类等微型动物出现的频率较高;⑤ 藻类、甚至昆虫类也会出现;⑥生物膜上的生物:类型广泛、种属繁多、食物链长且复杂。 生物膜上微生物的食物链较长: ① 动物性营养者所占比例较大,微型动物的存活率较高;② 食物链长;③ 污泥产量少于活性污泥系统(仅为1/4左右)。 能够存活世代时间较长的微生物,有利于硝化作用的进行。 分段运行与占优种属:分段运行,每段都繁衍与进入本段污水水质相适应的微生物,并形成占优种属,非常有利于微生物新陈代谢功能的充分发挥和有机污染物的降解。

生物膜和活性污泥上出现的微生物 在类型、种属和数量的比较 12

2、在处理工艺方面的特征 对水质、水量变动有较强的适应性; 剩余污泥的沉降性能良好,易于固液分离; 能够处理低浓度污水; 易于维护运行,运行费用少。

生物膜法的主要工艺类型 主要的生物膜法工艺有: 生物滤池:其中又可分为普通生物滤池、高负荷生物滤池、塔式生物滤池等; 生物转盘; 生物接触氧化法; 好氧生物流化床等。

1 生物滤池工艺 生物滤池的基本原理: 生物滤池是在污水灌溉的实践基础上发展起来的人工生物处理法; 首先于1893年在英国试验成功,从1900年开始应用于废水处理中; 主要有以下几种形式:普通生物滤池、高负荷生物滤池、塔式生物滤池、活性生物滤池等。 生物滤池示意图

生物滤池的构造与组成 生物滤池一般主要由滤床(池体与滤料)、布水装置和排水系统等三部分组成: 1、池体 在20世纪30、40年代以前,生物滤池的池体多为方形或矩形;在出现了旋转布水器之后,则大多数的生物滤池均采用圆形池体,主要是便于运行; 池壁可有孔洞或不带孔洞的两种:有孔洞的池壁有利于滤料的内部通风,但在冬季易受低气温的影响; 一般要求池壁高于滤料0.5m;在寒冷地区,有时需要考虑防冻、采暖、或防蝇等措施。

2、滤料:是生物膜赖以生长的载体,其主要特性有: 较大的表面积,有利于微生物的附着; 能使废水以液膜状均匀分布于其表面; 有足够大的孔隙率,使脱落的生物膜能随水流到池底,同时保证良好的通风; 适合于生物膜的形成与粘附,且应该既不被微生物分解,又不抑制微生物的生长,具有一定的化学稳定性; 有较好的机械强度,不易变形和破碎。 价格低廉

(1) 普通生物滤池的滤料: 一般为实心拳状滤料,如碎石、卵石、炉渣等; 工作层的滤料的粒径为25~40mm,承托层滤料的粒径为70~100mm; 同一层滤料要尽量均匀,以提高孔隙率; 滤料的粒径愈小,比表面积 就愈大,处理能力可以提高;但粒径过小,孔隙率降低,则滤料层易被生物膜堵塞; 一般当滤料的孔隙率在45%左右时,滤料的比表面积约为65~100m2/m3。

(2) 高负荷生物滤池的滤料: 滤料粒径较大,一般为40~100mm,其中工作层滤料的粒径为40~70mm,承托层则为70~100mm,孔隙率较高,可以防止堵塞和提高通风能力; 滤料常采用卵石、石英砂、花岗岩等,一般以表面光滑的卵石为好; 目前常采用塑料滤料:多用聚氯乙烯、聚苯乙烯、聚丙烯等制成;形状有波纹板式、斜管式和蜂窝式等,其特点有:质量轻、强度高、耐腐蚀、比表面积和孔隙率都较大。主要缺点:造价较高,初期投资较大。

主要有两种:固定式喷嘴布水装置、移动(常用回转式)式布水装置; 3 布水装置: 将废水均匀地喷洒在滤料上; 主要有两种:固定式喷嘴布水装置、移动(常用回转式)式布水装置; 普通生物滤池多采用固定式布水装置; 高负荷生物滤池和塔式生物滤池则常用旋转布水装置: 固定式布水装置 旋转布水器

4 排水系统 处于滤床的底部,其作用是支撑滤料,收集、排出处理后的废水与生物膜,以及保证良好的通风; 一般由渗水顶板、集水沟和排水渠所组成; 渗水顶板用于支撑滤料,其排水孔的总面积应不小于滤池表面积的20%;渗水顶板的下底与池底之间的净空高度一般应在0.6m以上,以利通风,一般在出水区的四周池壁均匀布置进风孔。

1 生物滤池工艺 生物滤池的工作原理: 含有污染物的废水从上而下从长有丰富生物膜的滤料的空隙间流过,与生物膜中的微生物充分接触,其中的有机污染物被微生物吸附并进一步降解,使废水得以净化; 主要的净化功能是依靠滤料表面的生物膜对废水中有机物的吸附氧化作用。

生物滤池工艺流程 出水回流 生物 二沉池 滤池 初沉池 进水 出水 剩余污泥 与活性污泥工艺的流程不同的是,在生物滤池中常采用出水回流,而基本不会采用污泥回流,因此从二沉池排出的污泥全部作为剩余污泥进入污泥处理流程进行进一步的处理。

影响生物滤池功能的主要因素 滤床的比表面积和孔隙率 滤床的高度 滤料表面积愈大,生物膜的量就愈多,净化功能就愈强;孔隙率大,则滤床不易堵塞,通风效果好,可为生物膜的好氧代谢提供足够的氧;滤床的比表面积和孔隙率愈大,扩大了传质的界面,促进了水流的紊动,有利于提高净化功能。 滤床的高度 不同高度滤床,生物膜量、微生物种类、去除有机物的速度等方面都是不同的;滤床的上层,废水中的有机物浓度高,营养物质丰富,微生物繁殖速度快,生物膜量多且主要以细菌为主,有机污染物的去除速度高;随着滤床深度的增加,废水中的有机物量减少,生物膜量也减少,微生物从低级趋向高级,有机物去除速度降低;有机物的去除效果随滤床深度的增加而提高,但去除速率却随深度的增加而降低。

25

负荷率--有机负荷与水力负荷 有机负荷-----kgBOD5/m3.d; 水力负荷:①表面水力负荷----m3/m2.d,或m/d;----平均滤速;②容积水力负荷---- m3/m3.d 在有机负荷较高时,生物膜的增长也会较快,可能会引起滤料堵塞,此时就需要调整水力负荷,当水力负荷增加时,可以提高水力冲刷力,维持生物膜的厚度,一般是通过出水回流来解决。

回流 对于高负荷生物滤池与塔式生物滤池,常采用回流。其优点:①提高滤池的效率,提高负荷率;② 可以冲刷去除老化生物膜,降低膜的厚度,并抑制滤池蝇的孳生和减少恶臭;③ 当进水缺氧、腐化、缺少营养元素或含有害物质时,回流可改善进水的腐化情况、提供营养元素和降低毒物浓度;④ 进水流量和水质有波动时,回流有调节和稳定进水的作用。 供氧 生物滤池一般是通过自然通风来保证供氧的;影响生物滤池自然通风的主要因素有:① 池内温度与气温之差;② 滤池高度;③ 滤料孔隙率及风力等;

生物滤池与活性污泥法的比较 项目 生物膜法 活性污泥法 基建费 低 较低 运行费 较高 气候的影响 较大 较小 技术控制 较易控制 要求较高 灰蝇和臭味 蝇多、味大 无 最后出水 负荷低时,硝化程度较高,但悬浮物较高 悬浮物较少,但硝化程度不高 剩余污泥量 少 大 泡沫问题 很少 较多

生物滤池的设计计算 1、普通生物滤池 生物滤池的设计内容主要包括滤床容积、布水系统、排水系统等三个部分。 (1)主要设计参数 ①工作层填料的粒径为2540mm,厚度为1.31.8m; 承托层填料的粒径为70100mm,厚度为0.2m。 ②在正常气温条件下,处理城市废水时,表面水力负荷为13 m3/m2.d,BOD5容积负荷为0.150.30kgBOD5/m3.d,BOD5的去除率一般为8595%; ③池壁四周通风口的面积不应小于滤池表面积的1% ④滤池数不应小于2座。

(2)计算公式

2、高负荷生物滤池 (1)主要设计参数 ①以碎石为滤料时,工作层滤料的粒径应为4070mm,厚度不大于1.8m,承托层的粒径为70100mm,厚度为0.2m;当以塑料为滤料时,滤床高度可达4m; ②正常气温下,处理城市废水时,表面水力负荷为1030 m3/m2.d,BOD5容积负荷不大于1.2kgBOD5/m3.d,单级滤池的BOD5的去除率一般为7585%;两级串联时,BOD5的去除率一般为9095%; ③进水BOD5大于200mg/l时,应采取回流措施; ④池壁四周通风口的面积不应小于滤池表面积的2%; ⑤滤池数不应小于2座。

(2)计算公式:

3、塔式生物滤池 (1)主要设计参数: ①一般常用塑料滤料,滤池总高度为812m,也可更高 ②容积负荷为1.03.0kgBOD5/m3.d,表面水力负荷为80200 m3/m2.d,BOD5的去除率一般为6585%; ③自然通风时,塔滤四周通风口的面积不应小于滤池横截面积的7.510%; 机械通风时,风机容量一般按气水比为100150:1来设计 ④塔滤数不应小于2座。

(2)主要计算公式:

2 生物转盘 构造与净化机理:废水处于半静止状态,而微生物则在转动的盘面上;转盘40%的面积浸没在废水中,盘面低速转动;盘面上生物膜的厚度与废水浓度、性质及转速有关,一般0.1~0.5mm。

生物转盘的组成 主要组成单元有:盘片、接触反应槽、转轴与驱动装置。 1、盘片 盘片的形状 外缘:圆形、多角形及圆筒形; 盘面:平板、凹凸板、波形板、蜂窝板、网状板等以及各种组合。 盘片的厚度与材质:要求质轻、薄、强度高,耐腐蚀,同时还应易于加工、价格低等;一般厚度为0.5~1.0cm;常用材料有聚丙烯、聚乙烯、聚氯乙烯、聚苯乙烯以及玻璃钢等。 转盘的直径:一般直径为2.0、2.5、3.0、3.5m等,常用的是3.0m。 盘片间的间距:一般为30mm,高密度型则为10~15mm。

生物转盘的组成 2、接触反应槽 一般可以用钢板或钢筋混凝土制成,横断面呈半圆形或梯形; 槽内水位一般达到转盘直径的40%,超高为20~30cm; 转盘外缘与槽壁之间的间距一般为20~40cm。

构成与系统组成:生物转盘的转速一般为18m/min;有一轴一段、一轴多段、以及多轴多段等形式;废水的流动方式,有轴直角流与轴平行流。 多段式生物转盘

生物转盘的主要特征 节能,即运行费用较低; 生物量多,净化率高,适应性强,出水水质较好; 生物膜上生物的食物链长,污泥产量少,为活性污泥法的1/2左右; 维护管理简单,功能稳定可靠,无噪音,无灰蝇; 受气候影响较大,顶部需要覆盖,有时需要保暖; 所需的场地面积一般较大,建设投资较高。

生物转盘的工艺流程与组合 废水 沉砂池 沉淀池 生物转盘 二沉池 出水 生物转盘 (厌氧脱氮) 二沉池 生物转盘 (BOD去除) 废水 絮凝剂(除磷) 甲醇 生物转盘 (厌氧脱氮) 二沉池 生物转盘 (BOD去除) 生物转盘 (硝化) 废水 初沉池 生物转盘 (再曝气) 终沉池 出水

生物转盘与其它工艺的组合流程 活性污泥回流 初沉池 生物转盘曝气池 二沉池 出水 废水 活性污泥回流 曝气池 生物转盘 二沉池 废水 初沉池

生物转盘的新进展 空气驱动生物转盘: 与沉淀池合建生物转盘: 与曝气池合建生物转盘:

3 生物接触氧化法 生物接触氧化法是一种介于活性污泥法与生物滤池之间的生物膜法处理工艺;又称为淹没式生物滤池。 生物接触氧化法的基本流程

生物接触氧化池的构造 生物接触氧化池由池体、填料、布水系统和曝气系统等组成;填料高度一般为3.0m左右,填料层上部水层高约为0.5m,填料层下部布水区的高度一般为0.5~1.5m之间,根据曝气装置与填料的相对位置,可以分为两大类: 曝气装置与填料分设:填料区水流较稳定,有利于生物膜的生长,但冲刷力不够,生物膜不易脱落;可采用鼓风曝气或表面曝气装置;较适用于深度处理。 曝气装置直接安设在填料底部,曝气装置多为鼓风曝气系统;可充分利用池容;填料间紊流激烈,生物膜更新快,活性高,不易堵塞;检修较困难。

曝气装置与填料分设

曝气装置直接安设在填料底部

生物接触氧化法的填料 填料是微生物的载体,其特性对接触氧化池中生物量、氧的利用率、水流条件和废水与生物膜的接触反应情况等有较大影响;分为硬性填料、软性填料、半软性填料、及球状悬浮型填料等。

生物接触氧化池内的生物固体浓度高于活性污泥法和生物滤池,具有较高的容积负荷(可达3.0~6.0kgBOD5/m3.d); 生物接触氧化主要特点 生物接触氧化池内的生物固体浓度高于活性污泥法和生物滤池,具有较高的容积负荷(可达3.0~6.0kgBOD5/m3.d); 不需要污泥回流,无污泥膨胀问题,运行管理简单; 对水量水质的波动有较强的适应能力; 污泥产量略低于活性污泥法。

4 生物流化床 生物流化床是70年代开发的一种新型生物膜法处理工艺; 以比重大于1的细小惰性颗粒如砂、焦碳、陶粒、活性炭等为载体; 废水以较高的上升流速使载体处于流化状态;生物固体浓度很高,传质效率也很高,是一种高效的生物处理构筑物。

载体颗粒的流化,是由于上升的水流(或水流与气流)所造成的。一般可以有以下三种状态: 载体颗粒流化原理 载体颗粒的流化,是由于上升的水流(或水流与气流)所造成的。一般可以有以下三种状态: 1) 固定状态; 2) 流化状态; 3) 流失状态

生物流化床的工艺类型根据供氧方式、脱膜方式及床体结构等的不同,可分为两相生物流化床和三相生物流化床。 在生物流化床外设充氧设备和脱膜设备,在床体内只有液、固两相;进入反应器之前,废水中的DO可达8~9mg/l(以纯氧为气源时,可达30~40mg/l)。

三相流化床:直接向反应器内充氧,床体内有气、固、液三相共存;气体搅动剧烈,载体颗粒之间摩擦剧烈,可使表层的生物膜自行脱落,因此一般无需体外脱膜装置。

主要包括反应器、载体、布水装置、充氧装置和脱膜装置等。 生物流化床的构造 主要包括反应器、载体、布水装置、充氧装置和脱膜装置等。 1、反应器 一般呈圆柱状;高径比一般采用3~4:1;若采用内循环三相生物流化床时,升流区截面积与降流区面积之比应在1左右。 2、载体 主要性能:① 比重略大于1;② 表面比较粗糙;③ 对微生物无毒性;④ 不与废水物质反应;⑤ 价廉易得。 常用载体有:砂粒、无烟煤、焦炭、活性炭、陶粒及聚苯乙烯颗粒; 生物固体浓度与载体投加量有直接关系。

生物流化床的构造 3、布水设备 4、充氧装置 5、脱膜装置 对两相生物流化床,布水均匀十分关键;对三相生物流化床,由于有气体的搅拌,布水设备不十分重要。 4、充氧装置 5、脱膜装置 一般三相生物流化床不需设置专门的脱膜装置;在两相生物流化床系统中常设的脱膜装置有:① 振动筛 ② 叶轮脱膜装置 ③ 刷式脱膜装置

生物流化床的优点及问题 ① 生物固体浓度高(10~20g/l),因此容积负荷较高(7~8kgBOD5/m3.d以上),水力停留时间可大大缩短,基建费用较小; ② 无污泥膨胀或其它生物膜法中的滤料堵塞; ③ 能适应不同浓度范围的废水,能适应较大的冲击负荷; ④ 由于容积负荷和床体高度较大,占地面积较小; ⑤ 实际生产运行的经验较少,对于床体内的流动特征尚无合适的模型描述,在进行放大设计时有一定的不确定性。