陈列文 上海交通大学 物理与天文系/粒子与核物理研究所(INPAC)

Slides:



Advertisements
Similar presentations
基于LAMOST的 致密天体与恒星族的多波段观测 刘继峰 国家天文台 银河系三维结构团组.
Advertisements

Study of the AMS-02 results
统计物理学与复杂系统 陈晓松 中国科学院理论物理研究所 兰州大学,2013年8月.
卓越中心青年骨干年度工作报告 周 顺 高能所理论室 2015年11月22日.
質量的故事 2009年7月28日.
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
方德清 马余刚 蔡翔舟 田文栋 王宏伟 陈金根 郭威
2015年年终总结 郭宗宽
Thinking of Instrumentation Survivability Under Severe Accident
Mini-SONG & Site testing at Delingha
Recent progress on the determination of the symmetry Energy
原子核质量相关物理量中的奇偶性 上海交通大学 物理与天文系 赵玉民.
北京大学激光等离子体加速器 传输束线实验进展
『從原子到宇宙』課程第四週 胡維平 國立中正大學化學暨生物化學系 10/06/2011
Prelimiary results for the structure of neutron stars
A New State of Matter: Quark-Gluon Plasma
自引力体系统计物理的新进展 Ping He
量子色动力学的凝聚态物理 王 群 中国科技大学/近代物理系
第十四届全国核结构会议 湖州 Determination of the interaction parameter in the ImQMD model by nuclear reactions at Fermi energy 田俊龙 安阳师范学院 物理与电气工程学院.
工作总结 & 研究计划 赵振华 中国科学院高能物理研究所 2015年5月22日.
生物芯片技术 刘超 李世燕 谢宏林
中国原子能科学研究院(CIAE) 2018/12/7.
贾宇 (on behalf of 吕才典) 国际创新海外团队,院前沿重点项目暨所创新团队2016年联合年会 Nov. 18, 2016
普通物理 General Physics 29 - Current-Produced Magnetic Field
邻近宇宙线源对高能电子的贡献 毕效军 粒子天体中心,中科院高能所 山东大学国际交流中心,威海 2017/9/21-23.
參加2006 SAE年會-與會心得報告 臺灣大學機械工程系所 黃元茂教授
Understanding masses of charm-strange states in Regge phenomenology
New Physics Beyond SM: An Introduction
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
Skyrme 能量密度泛函在重离子熔合反应中的应用
Fundamentals of Physics 8/e 28 - Magnetic Force
辐射带 1958年:探险者一号、探险者三号和苏联的卫星三号等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。 这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。
Neutron Stars and Black Holes 中子星和黑洞
Measurement of the continuum Ruds, Ruds(c)+Ψ(3770) and Rhad values in the range from to GeV 张达华 (for BES Collaboration) Institute of High Energy.
Quark Polarization in Relativistic Heavy Ion Collisions
第十五课:在医院看病.
Chp.4 The Discount Factor
Measurement of Magic Wavelengths for the 40Ca+ Clock Transition
Using the relativity principle, Einstein is able to derive that the energy of an object can be written as For v = c, the energy is infinite. Hence you.
普通物理 General Physics 21 - Coulomb's Law
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
Mechanics Exercise Class Ⅰ
6He的敲出反应机制研究 吕林辉 叶沿林等 北京大学实验核物理组
Chp.4 The Discount Factor
Safety science and engineering department
中微子理论进展报告 周顺 (高能所理论室) 2014年11月21日, 北京.
Inter-band calibration for atmosphere
Chp.4 The Discount Factor
中微子振荡的发现 中微子简史 太阳中微子 大气中微子 大亚湾实验 探索 我们身边看不见的存在 桂林高教会议  2017年8月24号
王伟 上海交通大学 2015 怀柔 强子物理与核物理前沿研讨会
彭光雄 G.X. Peng 1. Matching-invariant running 连续的跑动耦合常数 Resummation 重求和
美國亞利桑納州Eurofresh農場的晨曦
Q & A.
Baryon meson.
Nucleon EM form factors in a quark-gluon core model
Efficient Query Relaxation for Complex Relationship Search on Graph Data 李舒馨
磁星及其活动性的物理本质 —核物理与凝聚态物理的应用
名词从句(2).
Thanks 柳国丽 回顾一下 SM 的 EWSB: scalar Higgs field potential.
2014年年终总结 郭宗宽
动词不定式(6).
投影组态相互作用方法 (Projected Configuration Interaction(PCI) method
1 布洛赫定理与布洛赫波 2 近自由电子近似方法 3 紧束缚近似方法 4 其他方法 5 能带电子的态密度 6 布洛赫电子的准经典运动
稀土区原子核的形状变化和形状共存 华 辉 北京大学物理学院 2010年7月25-27日全国核结构会议 赤峰.
句子成分的省略(3).
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Electromagnetic properties of light nuclei
Principle and application of optical information technology
方德清 马余刚 蔡翔舟 陈金根 郭威 田文栋 王宏伟 曹喜光 傅瑶 周培 张国强
中子诱发锕系核裂变后现象的研究 (I)发射中子前裂变碎片质量分布
Presentation transcript:

陈列文 上海交通大学 物理与天文系/粒子与核物理研究所(INPAC) lwchen@sjtu.edu.cn 核物质的对称能 陈列文 上海交通大学 物理与天文系/粒子与核物理研究所(INPAC) lwchen@sjtu.edu.cn 对称能 对称能的确定 对称能与核素图上原子核的数目 对称能与暗物质 总结和展望 交叉学科理论研究中心,中国科学技术大学,合肥, 2016年11月18日

目录 对称能 对称能的确定 对称能与核素图上原子核的数目 对称能与暗物质 总结和展望

原子核的组成 原子核由质子和中子组成 核素: 给定中子数和质子数的原子核 元素: 给定质子数的原子核 同位素: 相同质子数但不同中子数的原子核 重离子:质量数大于4的离子,亦即比α粒子(4He)重的离子 同位旋:就核力的性质而言,质子与中子之间没有明显区别,因此把质子和中子看成同一种粒子(统称为核子)的两种不同状态,类比自旋的概念引入抽象的同位旋(isospin)空间,质子和中子是同位旋I相同,同位旋第3分量I3不同的两种状态 ,由此可确定它们的同位旋I = 1/2,质子的 I3 =1/2 ,中子的I3=-1/2,它们组成同位旋二重态 … (海森堡,1932年)。在强相互作用,同位旋是一个好量子数。 p. 1

原子核的质量和结合能 1945.8.9(长崎) 1945.8.6(广岛) p. 2 H-Bomb Atomic Bomb Power of Sun p. 2

重核的裂变 中国: 2016:~2% 2020:~7% 2030:~15% 2050:~22% p. 3

Symmetry energy including surface diffusion effects (ys=Sv/Ss) 有限核的对称能 原子核的结合能 - 液滴模型 (Liquid-drop model:Bethe-Weizsäcker mass formula-1935) Symmetry energy term (对称能项) Symmetry energy including surface diffusion effects (ys=Sv/Ss) W. D. Myers, W.J. Swiatecki, P. Danielewicz, P. Van Isacker, A. E. L. Dieperink,…… p. 4

有限核的对称能 16O 16N 泡利不相容原理 N > Z N = Z 对称能: 使中子数和质子数 趋于对称 库仑能: 偏离对称 p. 5

物质的状态方程 状态方程(EOS-Equation of State): a relationship among several state variables van der Waals EOS: The Nobel Prize in Physics 1910 was awarded to Johannes Diderik van der Waals "for his work on the equation of state for gases and liquids". The EOS depends on the interactions and properties of the particles in the matter. It describes how the state of the matter changes under different conditions p. 6

核物质的状态方程 p. 7 Nature of the nuclear force? Structure and stability of nuclei? Dynamics of heavy ion collisions? Nature of compact stars and dense nuclear matter? p. 7

Symmetric Nuclear Matter (relatively well-determined) 核物质的对称能 EOS of Isospin Asymmetric Nuclear Matter (Parabolic law) Symmetric Nuclear Matter (relatively well-determined) Symmetry energy term (poorly known) Isospin asymmetry Nuclear Matter Symmetry Energy p. 8

Astrophysics and Cosmology 为什么研究对称能? The multifaceted influence of the nuclear symmetry energy A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Phys. Rep. 411, 325 (2005). Nuclear Physics on the Earth Physics at km scale Physics at fm scale Symmetry Energy Astrophysics and Cosmology in Heaven The symmetry energy is also related to some issues of fundamental physics: 1. The precision tests of the SM through atomic parity violation observables (Sil et al., PRC2005) 2. Possible time variation of the gravitational constant (Jofre et al. PRL2006; Krastev/Li, PRC2007) 3. Non-Newtonian gravity proposed in the grand unified theories (Wen/Li/Chen, PRL2009) 4. Dark Matter (Zheng/Zhang/Chen, JCAP2014; Zheng/Sun/Chen, ApJ2015) p. 9

QCD Phase Diagram in 3D: density, temperature, and isospin V.E. Fortov, Extreme States of Matter – on Earth and in the Cosmos, Springer-Verlag Berlin Heidelberg 2011 Esym: Important for understanding the EOS of strong interaction matter and QCD phase transitions at extreme isospin conditions Heavy Ion Collisions (Terrestrial Lab); Compact Stars(In Heaven); … Quark Matter Symmetry Energy ? M. Di Toro et al., NPA775 (2006); Pagliara/Schaffner-Bielich, PRD81, (2010); Shao et al., PRD85,(2012); Chu/Chen, ApJ780 (2014); H. Liu et a., PRD94 (2016); Xia/Xu/Zong, (2016) At extremely high baryon density, the main degree of freedom could be the deconfined quark matter rather than confined baryon matter, and there we should consider quark matter symmetry energy (isospin symmetry is still satisfied). The isopsin asymmetric quark matter could be produced/exist in HIC/Compact Stars p. 10

目录 对称能 对称能的确定 对称能与核素图上原子核的数目 对称能与暗物质 总结和展望

核物质状态方程: 多体理论方法 The nuclear matter EOS cannot be measured experimentally, its determination thus depends on theoretical approaches Microscopic Many-Body Approaches Non-relativistic Brueckner-Bethe-Goldstone (BBG) Theory Relativistic Dirac-Brueckner-Hartree-Fock (DBHF) approach Self-Consistent Green’s Function (SCGF) Theory Variational Many-Body (VMB) approach Green’s Function Monte Carlo Calculation Vlowk + Renormalization Group Nuclear Lattice Approach Effective Field Theory Density Functional Theory (DFT) Chiral Perturbation Theory (ChPT) QCD-based theory Phenomenological Approaches Relativistic mean-field (RMF) theory Quark Meson Coupling (QMC) Model Relativistic Hartree-Fock (RHF) Non-relativistic Hartree-Fock (Skyrme-Hartree-Fock) Thomas-Fermi (TF) approximations p. 11

核物质状态方程: 多体理论方法 p. 12 Z.H. Li et al., PRC74, 047304(2006) Dieperink et al., PRC68, 064307(2003) BHF Chen/Ko/Li, PRC72, 064309(2005) Chen/Ko/Li, PRC76, 054316(2007) p. 12 15

Promising Probes of the Esym(ρ) (an incomplete list !) 核物质对称能: 实验探针 Promising Probes of the Esym(ρ) (an incomplete list !) Pigmy/Giant resonances Nucleon optical potential B.A. Li, L.W. Chen, C.M. Ko Phys. Rep. 464, 113(2008) p. 13

放射性束流装置 Cooling Storage Ring (CSR) Facility at HIRFL/Lanzhou in China (2008) up to 500 MeV/A for 238U http://www.impcas.ac.cn/zhuye/en/htm/247.htm Beijing Radioactive Ion Facility (BRIF-II) at CIAE in China (2012) http://www.ciae.ac.cn/ Radioactive Ion Beam Factory (RIBF) at RIKEN in Japan (2007) http://www.riken.jp/engn/index.html Texas A&M Facility for Rare Exotic Beams -T-REX (2013) http://cyclotron.tamu.edu Facility for Antiproton and Ion Research (FAIR)/GSI in Germany (2022) up to 2 GeV/A for 132Sn (NUSTAR - NUclear STructure, Astrophysics and Reactions ) http://www.gsi.de/fair/index_e.html SPIRAL2/GANIL in France (2013) http://pro.ganil-spiral2.eu/spiral2 Selective Production of Exotic Species (SPES)/INFN in Italy (2015) http://web.infn.it/spes Facility for Rare Isotope Beams (FRIB)/MSU in USA (2018) up to 400(200) MeV/A for 132Sn http://www.frib.msu.edu/ The Korean Rare Isotope Accelerator (KoRIA-RAON(RISP Accelerator Complex) (Planning) up to 250 MeV/A for 132Sn, up to 109 pps …… p. 14

核物质对称能:饱和密度附近 Current constraints (An incomplete list) on Esym (ρ0) and L from terrestrial experiments and astrophysical observations Chen/Ko/Li, PRL94,032701 (2005) 饱和密度处对称能的斜率 “misc”: miscellaneous W.G. Newton et al., Journal of Physics: Conf. Series 420 (2013) 012145 p. 15

核物质对称能:饱和密度附近 Current constraints (An incomplete list) on Esym (ρ0) and L from terrestrial experiments and astrophysical observations Esym(ρ0) = 32.5±2.5 MeV, L = 55±25 MeV L.W. Chen, Nucl. Phys. Rev. (原子核物理评论) 31, 273 (2014) [arXiv:1212.0284] B.A. Li, L.W. Chen, F.J. Fattoyev, W.G. Newton, and C. Xu, arXiv:1212.1178 p. 16

核物质对称能:饱和密度附近 饱和密度处对称能的斜率 饱和密度处对称能的大小 p. 17 Jim Lattimer and Andrew Steiner using 6 out of approximately 30 available constraints J.M. Lattimer and A.W. Steiner, EPJA50, (2014) 40 饱和密度处对称能的斜率 The centroid is around Sv=31 MeV and L=50 MeV Microscopic calculations (H/G) do not include higher-order contribution? EOS of SNM? Chen/Ko/Li/Xu, PRC82, 024321 (2010) Why? Zhang/Chen, PLB726, 234 (2013) Neutron skin is actually determined by L(0.11 fm-3) rather than L(0.16 fm-3) 0.11 fm-3 ~ Average density of Heavy Nuclei 饱和密度处对称能的大小 p. 17

核物质对称能:亚饱和密度行为 p. 18 Z. Zhang and LWC, PRC92, 031301(R) (2015) Wada and Kowalski: experimental results of the symmetry energies at densities below 0.2 𝝆 𝟎 and temperatures in the range 3 ~11 MeV from the analysis of cluster formation in heavy ion collisions. Wada et al., Phys. Rev. C85, (2012) 064618; Kowlski et al., Phys. Rev. C75, (2007) 014601. Natowitz et al., Phys. Rev. Lett. 104, (2010) 202501. p. 18

A Soft or Stiff Esym at supra-saturation densities ??? 核物质对称能:超饱和密度行为 A Soft or Stiff Esym at supra-saturation densities ??? pion ratio (FOPI): ImIQMD, Feng/Jin, PLB683, 140(2010) n/p v2 (FOPI): Russotto/Trauntmann/Li et al., (UrQMD) PLB697, 471(2011) PRC94, 034608 (2016) Stiffer Pion Medium Effects? Threshold effects? Δ resonances? …… Xu/Ko/Oh PRC81, 024910(2010) Xu/Chen/Ko/Li/Ma PRC87, 067601(2013) Hong/Danielewicz, PRC90, 024605 (2014) Song/Ko, PRC91, 014901 (2015) Softer pion ratio (FOPI): IBUU04, Xiao/Li/Chen/Yong/Zhang, PRL102,062502(2009) ImIBLE, Xie/Su/Zhu/Zhang, PLB718,1510(2013) p. 19

Esym systematics: A Soft Esym at supra-saturation densities ??? 核物质对称能:超饱和密度行为 Esym systematics: A Soft Esym at supra-saturation densities ??? 60 EDFs Chen, EPJ Web of Conf. 88, 00017 (2015) p. 20

核物质对称能:现状 Esym(ρ0) = 32.5±2.5 MeV L = 55±25 MeV p. 21 Cannot be that all the constraints on Esym (ρ0) and L are equivalently reliable since some of them don’t have any overlap. However, essentially all the constraints seem to agree with: Esym(ρ0) = 32.5±2.5 MeV L = 55±25 MeV The symmetry energy at subsaturation densities have been relatively well-constrained. But at very low densities, the clustering could be important and how does it affect the symmetry energy? All the constraints on the high density Esym come from HIC’s (FOPI), and all of them are based on transport models. The constraints on the high density Esym are elusive and controversial for the moment !!! (A new window from Esym systematics? Softer high density Esym? – L.W. Chen, EPJ Web of Conferences 88, 00017 (2015)) p. 21

Chinese@NuSYM15 (Krakow, Poland)

NuSYM16 (Tsinghua, Beijing,China) p. 23

目录 对称能 对称能的确定 对称能与核素图上原子核的数目 对称能与暗物质 总结和展望

核素示意图 核素图上原子核能有多少个? 丰中子核的边界在哪儿? 已知大约118种元素(包括近年来新发现的、还未命名的) 只有不到300个稳定核(对此我们有一定认识) 对大部份不稳定核有所知,但知之不多 对其余几千个远离稳定区的核则一无所知 这些核素为人们提供了丰富的重离子源 (~270) (~3000) (~4000) SHE 核素图上原子核能有多少个? 丰中子核的边界在哪儿? p. 24

Dripline: Named by John Wheeler 原子核的存在极限:滴线的位置 Dripline: Named by John Wheeler Two-neutron (-proton) separation energy: 𝑆 2𝑛 𝑁,𝑍 =𝐵 𝑁−2,𝑍 −𝐵 𝑁,𝑍 >0 𝑆 2𝑝 𝑁,𝑍 =𝐵 𝑁,𝑍−2 −𝐵 𝑁,𝑍 >0 Same neutron number The two-neutron (-proton) drip line nuclei is recognized as the last (or heaviest) even-even nuclei in an isotope (isotone) chain which satisfies the criteria given above. Same proton number p. 25

A.V. Afanasjev et al., PLB726, 680 (2013) 原子核的存在极限:滴线的位置 Obtained two-neutron (-proton) drip line in SHF approach and RMF theory J. Erler et al., Nature 486, 509 (2012) Theoretically, although various mean-field models predict similar proton drip line, the predicted neutron drip line exhibit significant variations. Why? A.V. Afanasjev et al., PLB726, 680 (2013) p. 26

Neutron dripline is sensitive to L. 滴线与对称能 Neutron dripline is sensitive to L. Calculations from microscopic density functionals provide no evidence for the strong correlation between neutron dripline and L. p. 27

滴线与对称能-液滴模型估算 Semi-empirical mass formula can provide us a good preview of how the EoS affects the nuclear drip lines 𝐵 𝑁,𝑍 = 𝑎 𝑣𝑜𝑙 𝐴+ 𝑎 𝑠𝑢𝑟𝑓 𝐴 2/3 + 𝑎 𝑠𝑦𝑚 𝐴 𝑁−𝑍 2 𝐴 + 𝑎 𝐶𝑜𝑢𝑙 𝑍 𝑍+1 𝐴 1/3 + 𝐸 𝑝𝑎𝑖𝑟 If we assume 𝑎 𝑠𝑦𝑚 𝐴 ≈ 𝑎 𝑠𝑦𝑚 𝐴+2 , for a typical neutron drip line nuclei 𝟔𝟖 𝟐𝟐𝟐 𝐄𝐫 (Z=68) 𝑺 𝟐𝒏 𝑵,𝒁 ≈−𝟐 𝒂 𝒗𝒐𝒍 −𝟎.𝟐𝟐 𝒂 𝒔𝒖𝒓𝒇 −𝟏.𝟐𝟒 𝒂 𝒔𝒚𝒎 𝑨 +𝟐.𝟐𝟕 𝒂 𝑪𝒐𝒖𝒍 for a typical proton drip line nuclei 𝟗𝟔 𝟐𝟐𝟐 𝐂𝐦 (Z=96) 𝑺 𝟐𝒑 𝑵,𝒁 ≈−𝟐 𝒂 𝒗𝒐𝒍 −𝟎.𝟐𝟐 𝒂 𝒔𝒖𝒓𝒇 +𝟎.𝟔𝟎 𝒂 𝒔𝒚𝒎 𝑨 −𝟓𝟖.𝟎𝟕 𝒂 𝑪𝒐𝒖𝒍 𝒂 𝒗𝒐𝒍 ~ −𝟏𝟔 𝐌𝐞𝐕 𝒂 𝒔𝒖𝒓𝒇 ~ 𝟏𝟖 𝐌𝐞𝐕 𝒂 𝑪𝒐𝒖𝒍 ~ 𝟎.𝟕 𝐌𝐞𝐕 P. Danielewicz, NPA 727, 233 (2003) 𝒂 𝒔𝒚𝒎 𝑨 corresponds to 𝑬 𝒔𝒚𝒎 𝝆 𝒄 , where 𝝆 𝒄 ~0.11 fm-3 for heavy nuclei M. Centelles et al., PRL102, 122502 (2009); L.W. Chen, PRC83, 044308 (2011); P. Danielewicz and J. Lee, NPA922, 1 (2014) p. 28

滴线与对称能-平均场理论计算 p. 29 𝑬 𝒔𝒚𝒎 𝝆 𝒔𝒄 =𝟐𝟔.𝟔𝟓±𝟎.𝟐𝟎 𝐌𝐞𝐕 4 Skyrme interaction Z. Zhang/LWC PLB726, 234 (2013) 𝑬 𝒔𝒚𝒎 𝝆 𝒔𝒄 =𝟐𝟔.𝟔𝟓±𝟎.𝟐𝟎 𝐌𝐞𝐕 4 Skyrme interaction MSL1 𝑬 𝒔𝒚𝒎 𝝆 𝒄 =𝟐𝟔.𝟔𝟕 𝐌𝐞𝐕 KDE 𝑬 𝒔𝒚𝒎 𝝆 𝒄 =𝟐𝟔.𝟑𝟗 𝐌𝐞𝐕 SLy9 𝑬 𝒔𝒚𝒎 𝝆 𝒄 =𝟐𝟔.𝟕𝟐 𝐌𝐞𝐕 SLy4 𝑬 𝒔𝒚𝒎 𝝆 𝒄 =𝟐𝟔.𝟒𝟗 𝐌𝐞𝐕 1 relativistic mean field DD-ME𝛿 𝑬 𝒔𝒚𝒎 𝝆 𝒔𝒄 =𝟐𝟔.𝟖𝟔 𝐌𝐞𝐕 A strong correlation exists between the two-neutron drip line and 𝑬 𝐬𝐲𝐦 𝝆 𝒄 !!! p. 29

R. Wang and L.W. Chen, PRC92, 031303(R)(2015) 滴线与对称能-平均场理论计算 R. Wang and L.W. Chen, PRC92, 031303(R)(2015) J. Erler et al., Nature 486, 509 (2012) The candidate interactions with similar Esym(rho_c) predict similar neutron dripline Next rare isotope (FRIB) facility can cover the dirpline up to Z=30 and around Z~40 Up to Z=120, the number of even-even nuclei is 1941+/-31 (only 800 have been discovered experimentally) and the total number of bound nuclei is 6866+/-166 (only 3191 have been discovered experiment ally) Exp:M. Thoennessen, Rep. Prog. Phys. 76, 056301(2013); Int. J. Mod. Phys. E 23, 1430002 (2014); arXiv:1501.06761. p. 30

目录 对称能 对称能的确定 对称能与核素图上原子核的数目 对称能与暗物质 总结和展望

Dark Matter Search χ χ’ f f’ Collider AMS XMM-Newton Compact Direct Planck (A&A571(2014) A16): Baryon Matter: ~5% Dark Matter: ~27% Dark Energy: ~68% Dark Matter Search Candidates: -WIMP -Axion -SuperWIMPs -Sterile Neutrinos -Gravitino -…… Compact Objects Direct Detection f f’ χ χ’ Collider AMS XMM-Newton p. 31

暗物质的直接探测 ? ! They use the empirical form factors proposed by Helm as Nuclear Form Factor Nuclear Recoil DM 𝒗≈𝟐𝟐𝟎 km/s 𝑬 𝑹 ≈ 𝜪(𝟏𝟎 𝒌𝒆𝑽 They use the empirical form factors proposed by Helm as And they usually set the isospin-violating parameter equal to 1 Detectable Signal R. H. Helm, Phys. Rev. (1956) 1466 Helm —— Charge distributions —— Matter distributions ✔ ? J. Ellis et al., Eur. Phys. J. C 24 (2002) 311 R.C. Cotta et al., New J. Phys. 11 (2009) 105026 Neutralino couples to proton and neutron differently ! p. 32

同位旋破缺的暗物质 Is not consistent with each other Consistent with each other 𝒈 𝒏𝒑 = 1.0 Is not consistent with each other Consistent with each other 𝒈 𝒏𝒑 = -0.7 J. L. Feng et al. Phys. Lett. B , 124-127 (2011) X.G. He, B. Ren, and J. Tandean, PRD85, 093019 (2012) p. 33

原子核内中子和质子的分布 MeV 132 𝑋𝑒 : fm Zheng/Zhang/Chen, JCAP08(2014)011 We investigate how the Nuclear Symmetry Energy affects the matter distributions under the constraints of Neutron skin thickness of 208 Pb given by PREX/JLab 208 𝑃𝑏 : fm MeV 132 𝑋𝑒 : fm Huge uncertainties of neutron distributions are given which are strongly related to symmetry energy! p. 34

symmerty energy effect 核的形状因子:对称能效应 Zheng/Zhang/Chen, JCAP08(2014)011 Little symmetry energy effect Significant symmerty energy effect p. 35

Little effect (~1%) compared with the empirical values 核的形状因子:对称能效应 Zheng/Zhang/Chen, JCAP08(2014)011 Sensitivities of LUX and XENON100 are sufficiently reduced to be consistent with CDMS Little effect (~1%) compared with the empirical values Significant improvement in the sensitivity of Xe-based detectors compared with the empirical values due to Nuclear Symmetry Energy effect p. 36

中子星吸积暗物质 𝒓 𝒑 Traveling path (Geodesic equation) Capture condition Neutron star 𝑟 𝑝 : the perihelion radius Total accretion rate Ms: mass of neutron stars (per solar mass); Rs: radius of neutron stars (km) p. 37

中子星吸积暗物质 Fraction of the capturable dark matter Scattering inside neutron star matter Baryon density: Proton fraction: Neutron star EOS Pauli blocking factor: Travelling path: Isospin-violating factor: What we are interested in Scattering cross-section in the free space: C. Kouvaris, Phys. Rev. D 77 (2008) 023006 p. 38

Varying with Symmetry Energy ! 中子星吸积暗物质 Zheng/Sun/Chen, ApJ800, 141 (2015) EOS of neutron star matters TOV Neutron stars consist of β-equilibrium npeμ matter with charge neutrality proton fraction baryon density Varying with Symmetry Energy ! p. 39

中子星吸积暗物质 Total mass So small ! p. 40 t: the living age of the neutron star f: contains all the effects caused by different neutron star strutures For old neutron stars around the earth: So small ! or p. 40

黑洞的形成 Black hole formation p. 41 Captured DM will go on scattering with star matters and accumulate within a small radius at the star core When the mass of the DM exceed the Chandrasekhar limit (for non-interacting ADM) too large Planck mass: Black hole forms and it will eventually destroy the whole neutron star So we require to ensure the existence of the old neutron stars p. 41

中子星作为暗物质的探针 Constraints from old neutron stars p. 42 Much more Zheng/Sun/Chen, ApJ800, 141 (2015) Constraints from old neutron stars Much more sensitive than the sensitivity of the traditional detectors (~10-42 cm2) Isospin-violating effects affect the constraints significantly Isospin-violating effects vary with the nuclear inter -action we used p. 42

中子星作为暗物质的探针 Constraints from the realistic PSR B1257+12 p. 43 Zheng/Sun/Chen, ApJ800, 141 (2015) The pulsar PSR B1257+12 is a planetary system with one solitary neutron star being orbited by three planets located 0.6 kpc (kiloparsec千秒差距=3262 light year) away from the solar system. Its age is about 0.862 Gyr (Ts=10^5 K and M=1.4Msun) For low mass DM (<20 GeV), the constraint from NS is much stronger than that from direct detection experiments ! p. 43

目录 对称能 对称能的确定 对称能与核素图上原子核的数目 对称能与暗物质 总结和展望

总结和展望 通过重离子碰撞,原子核结构性质(mass, neutron skin, GR/PG…), 以及核子光学势的研究,我们已经对亚饱和密度以及饱和密度附近 核物质对称能有了比较好的认识: 亚饱和密度区的核物质对称能 – 比较精确 饱和密度附近的核物质对称能: Esym(ρ0) =32.5±2.5 MeV and L=55±25 MeV 更精确的约束需要更精确的实验数据和更可靠的理论方法! 决定核物质对称能的高密行为依然是一个巨大的挑战 (Many-body forces, Short range tensor forces, Short range NN correlations, Model cross check, more data,……).丰中子核引起的高能重离子碰撞的实验 数据将非常重要! 对称能的确定对于理解一些基本的科学问题(比如核素图上原子核的 数目和暗物质等)有重要意义 p. 44

Acknowledgements Collaborators: Funding: Peng-Cheng Chu (QTU, Qingdao) Wei-Zhou Jiang (SEU. Nanjing) Che Ming Ko, Zhen Zhang (TAMU. Texas) Bao-An Li, Bao-Jun Cai (TAMU-Commerce, Texas) Xiao-Hua Li (USC, Hengyang) De-Hua Wen (SCUT, Guanzhou) Zhi-Gang Xiao (Tsinghua, Beijing) Chang Xu (NJU, Nanjing) Jun Xu (SINAP, CAS, Shanghai) Gao-Chan Yong (IMP, Lanzhou) Xin Wang, Zhao-Wen Zhang, Kai-Jia Sun, Hao Zheng, Rui Wang, Ying Zhou, Jie Pu (SJTU, Shanghai) Funding: National Natural Science Foundation of China Major State Basic Research Development Program (973 Program) in China Shanghai Rising-Stars Program Shanghai “Shu-Guang” Project Shanghai “Eastern Scholar” Science and Technology Commission of Shanghai Municipality

谢 谢! Thanks!