Chapter 2: Digital Image Fundamentals

Slides:



Advertisements
Similar presentations
Chapter 2 Combinatorial Analysis 主講人 : 虞台文. Content Basic Procedure for Probability Calculation Counting – Ordered Samples with Replacement – Ordered.
Advertisements

§2 线性空间的定义与简单性质 主要内容 引例 线性空间的定义 线性空间的简单性质 目录 下页 返回 结束.
十五條佛規 後學:張慈幸
医用放射线设备概论 第三节 X线CT设备 CT(Computed Tomography) 计算机断层摄影.
道路交通管理 授课教师:于远亮.
資料庫設計 Database Design.
1. 理想的路由算法 有关路由选择协议的几个基本概念 算法必须是正确的和完整的。 算法在计算上应简单。
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
SHARE with YOU Why am I here? (堅持……) What did I do?
第一章 導論.
数字图像处理 刘伯强 山东大学生物医学工程.
Blind dual watermarking for color images’ authentication and copyright protection Source : IEEE Transactions on Circuits and Systems for Video Technology.
Euler’s method of construction of the Exponential function
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
Mini-SONG & Site testing at Delingha
Population proportion and sample proportion
聲音檔和 Video 檔的讀與寫 (by Matlab)
模式识别 Pattern Recognition
Manifold Learning Kai Yang
Digital Terrain Modeling
D. Halliday, R. Resnick, and J. Walker
Chapter 6 Graph Chang Chi-Chung
Creating Animated Apps (I) 靜宜大學資管系 楊子青
Sampling Theory and Some Important Sampling Distributions
Fundamentals of Physics 8/e 27 - Circuit Theory
師大資工所助教 羅安鈞 Matlab with DIP 教學 師大資工所助教 羅安鈞
第二十九單元 方向導數與梯度.
光流法 (Optical Flow) 第八章 基于运动视觉的稠密估计 光流法 (Optical Flow)
组合逻辑3 Combinational Logic
MRI常见伪影介绍 张进慧.
The expression and applications of topology on spatial data
聲轉電信號.
第三章 基本觀念 電腦繪圖與動畫 (Computer Graphics & Animation) Object Data Image
多媒體概論報告-BMP 組員名稱: 盧彥良-資料蒐集 周誠哲-資料蒐集
The Concept of Fuzzy Theory
何清波 博士 副教授 中国科学技术大学 精密机械与精密仪器系 安徽合肥 电话:
数学基础及图像的基本概念 (研究生) 巫义锐 河海大学计算机与信息学院 个人网址:wuyirui.github.io
数字图像处理(一).
磁共振原理的临床应用 福建医科大学附属第一医院影像科 方哲明.
第二章 图像和视觉基础 图象处理的研究需要了解人类视觉机理: 人们能够区分的光强度差别有多大?
Source: IEEE Transactions on Image Processing, Vol. 25, pp ,
定语从句(5).
Network Design in the Supply Chain (Part1)
Chapter 5 Enantiomerism
第三章 基本觀念 電腦繪圖與動畫 (Computer Graphics & Animation) Object Data Image
Chapter 9 (三维几何变换) To Discuss The Methods for Performing Geometric Transformations.
A high payload data hiding scheme based on modified AMBTC technique
Version Control System Based DSNs
VIDEO COMPRESSION & MPEG
影像處理的基本知識 影像數位化 數位影像的基本概念.
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
3.5 Region Filling Region Filling is a process of “coloring in” a definite image area or region. 2019/4/19.
Course 10 削減與搜尋 Prune and Search
林福宗 清华大学 计算机科学与技术系 2008年9月 2019年5月5日 多媒体技术教程 第4章 彩色数字图像基础 林福宗 清华大学 计算机科学与技术系 2008年9月.
实验一 熟悉MATLAB环境 常用离散时间信号的仿真.
An Efficient MSB Prediction-based Method for High-capacity Reversible Data Hiding in Encrypted Images 基于有效MSB预测的加密图像大容量可逆数据隐藏方法。 本文目的: 做到既有较高的藏量(1bpp),
数字图像处理.
磁共振原理的临床应用.
《手把手教你学STM32》 主讲人 :正点原子团队 硬件平台:正点原子STM32开发板 版权所有:广州市星翼电子科技有限公司 淘宝店铺:
动词不定式(6).
第九章 交叉分析 9.1 前言 9.2 功能視窗 9.3 範例 9.4 兩變數獨立的檢定    -卡方檢定 9.5 交叉分析的重點.
5. Combinational Logic Analysis
醫工所碩士二年級 R 葉昱甫 電子所碩士一年級 R 謝博鈞 電信所碩士一年級 R 王欣平
2 Number Systems, Operations, and Codes
第二章 数字图像处理基础 2.1 图像数字化技术 2.2 数字图像类型 2.3 图像文件格式 2.4 色度学基础与颜色模型.
Graph 1 Michael Tsai 2012/4/24 連載: 學生上課睡覺姿勢大全
Principle and application of optical information technology
Gaussian Process Ruohua Shi Meeting
范例分析—— Shonan Christ Church 组员:牛贤锐 孙浩源 指导老师: 杜春宇 刘士兴 秦丹尼 宣湟 1.
Presentation transcript:

Chapter 2: Digital Image Fundamentals Image sampling and quantization Digital image representation Some basic relationships between pixels Linear and nonlinear operation

2.1 Image sampling and quantization 采 样 子 系 统 成像系统 量 化 器 景物 采样图像 数字图像 图像 图2.1 图像采集系统

2.1 Image sampling and quantization digitizing image is to convert a continuous image to digital form. this involves two processes: sampling and quantization

Image sampling 采样定理 冲激串采样 采样函数 采样周期 T 采样频率

Image sampling 是频域上的周期函数,它满足 是由一组移位的 叠加而成,但在幅度上有1/T的变化

Image sampling 采样定理 冲激串采样的频谱

Image sampling 采样定理 冲激串采样的频谱

Image sampling 图像采样 空间采样函数 空间采样函数 空间采样频率

Image sampling 图像采样 空间采样函数

Image sampling 图像采样 采样后图像

Image sampling 图像采样 采样图像频谱

Image sampling digitizing the coordinate is called sampling sampling space is equal along direction of x- and y-coordinate if sampling space is too small, data capacity is too large, otherwise , information may be overlap, so that detail information can not identified. sampling index

Sampling example 细节清晰,数据量为100% 细节无法辨认,数据量为1%

Sampling resolution Spatial resolution (1) the most smallest number of pixel per unit distance. unit:pixel/inch,pixel/cm (2) a image involves the most smallest number of pixel . unit:pixel × pixel

quantization Digitizing the amplitude is called quantization Equal quantization and un-equal quantization Quantization space is too small, otherwise, it may be aliasing and pattern sampling index Gray-level resolution it is the number of gray level of a pixel, which is usually an integer power of 2.the most common number is 8 bit or 16 bit.

aliasing and pattern

2.2 Digital image representation coordinate conventions image as matrices three type of image BITMAP representation reading images displaying images

coordinate conventions

image as matrices

three type of image (1) Binary image Binary image Gray image Color image (1) Binary image Binary image

(2) Gray image (3) Color image A quantity gray is used for image representation, and no color information (3) Color image color image RGB 3 matrix

File structure 数据区 RGBQUAD 像素的RGB值 像素的调色板索引值 真彩色模式 索引色模式 file-head bITMAPFILEHEADER information-head BITMAPINFOHEADER 数据区 file-head BITMAPFILEHEADER information-head BITMAPINFOHEADER color palette RGBQUAD 数据区 像素的RGB值 像素的调色板索引值 真彩色模式 索引色模式

file-head BITMAPFILEHEADER bfType 文件类型标识“BM” bfSize 文件总字节数 bfReserved1 保留字“0” bfReserved2 保留字“0”

information-head BITMAPINFOHEADER biSize 信息头结构体长度,为40 biWidth 图像宽度,单位是像素 biHeight 图像高度,单位是像素 biPlanes 必须为1,暂无意义 biCompression 指定位图是否压缩 biSizeImage 实际位图数据所占字节数 biXperlsPerMeter 指定目标设备的水平分辨率 biYperlsPerMeter 指定目标设备的垂直分辨率 biClrImportant 图像中重要的颜色数

真彩色模式的数据区结构 像素的RGB值 真彩色数据区 :

索引色模式的调色板 调色板 RGBQUAD 索引值 R G B 1 R1 G1 B1 2 R2 G2 B2 : : N RN GN BN

索引色模式的数据区 数据区 像素的调色板索引值 索引值 R G B 1 R1 G1 B1 2 R2 G2 B2 : : N RN GN BN

reading images Syntax : imread( ‘filename’ ) 包含图像文件全名的字符串 Syntax : imread( ‘filename’ ) >>f=imread(‘chestxray.jpg’); >>size(f); ans= 1024 1024

displaying images Syntax : imshow( f,G) or imshow(f,[low high]) 显示该图像的灰度级数 Syntax : imshow( f,G) or imshow(f,[low high]) 图像数组 >>f=imread(‘chestxray.jpg’); >>size(f); >>imshow(f,256); >>imshow(f,[150 237]);

2.3 Some basic relationships between pixels neighbors of a pixel adjacency, connectivity, region, and boundaries distance measure Linear and nonlinear operation

neighbors of a pixel 1. 4-neighbors of a pixel p at coordinates (x, y) Their coordinates is respectively (x+1, y), (x-1, y), (x , y+1), (x ,y-1). N4(p) 2. 4 diagonal-neighbors of a pixel p at (x, y) Their coordinates is respectively (x+1, y+1), (x+1, y-1), (x-1 , y+1), (x-1 ,y-1). ND(p)

neighbors of a pixel 3. 8-neighbors of a pixel p at (x, y) Their coordinates is respectively (x+1, y), (x-1, y), (x , y+1), (x ,y-1), (x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1) . N8(p)

1. adjacency adjacency, connectivity, region, and boundaries 消除采用8-邻接产生的二义性。 (1) 4 - adjacency: if q is in the set N4(p). (2) 8 - adjacency: if q is in the set N8(p). (3)m - adjacency: if q is in N4(p) or q is in ND(p) and N4(p) ∩N4(q) has no pixels whose values are from V. 0 1 1 0 1 0 0 0 1 (a) (b) (c) Adjacency of a pixel

3. connectivity ( p q in set S) adjacency, connectivity, region, and boundaries 2. path( p(x, y) q(s, t) ) A sequence of distinct pixels with coordinates: ( x0 , y0 ) , ( x1, y1 ) , … , (xn , yn) If ( x0 , y0 ) = (xn , yn) ,the path is a closed path. 3. connectivity ( p q in set S) If there exists a path between them consisting entirely of pixels in S. a connected component of S is the set of pixels that are connected to a pixel in S. if it only has one connected component ,then S is a connected set.

adjacency, connectivity, region, and boundaries if R is connected set, R is called a region of the image. 5. boundaries the boundary of a region R is the set of pixels in the region that have one or more neighbors that are not in R.

Distance measure 1. A distance function or metric For p(x,y), q(s,t),z(v,w), if (a) D(p,q)≥0 ( D(p,q) = 0 iff p=q ) (b) D(p,q) = D(q, p) (c) D(p,z) ≤ D(p,q) + D(q, z) 2. Euclidean distance

Distance measure 3. D4 distance city block distance 4. D8 distance chessboard distance 2 2 1 2 2 1 0 1 2 D4(p,q)≤2 2 2 2 2 2 2 1 1 1 2 2 1 0 1 2 D8(p,q)≤2

Linear and nonlinear operation