袁 星 谢正辉,梁妙玲 中国科学院大气物理研究所

Slides:



Advertisements
Similar presentations
663 Chapter 14 Integral Transform Method Integral transform 可以表示成如下的積分式的 transform  kernel Laplace transform is one of the integral transform 本章討論的 integral.
Advertisements

丰台货运口岸 平谷国际陆港 通州口岸(在建). 北京口岸布局 北京平谷 国际陆港 首都机场 空港口岸 北京西站 铁路口岸 北京新机场 空港口岸 北京丰台 货运口岸 北京朝阳口岸 通州口岸 (在建) 天竺综合 保税区 亦庄保税物流 中心( B 型)
Basic concepts of structural equation modeling
Chapter 3 預測.
SPSS统计软件的使用方法基础 主讲人:宋振世 (闵行校区) 电 话:
資料探勘(Data Mining)及其應用之介紹
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
Chaoping Li, Zhejiang University
Mode Selection and Resource Allocation for Deviceto- Device Communications in 5G Cellular Networks 林柏毅 羅傑文.
XI. Hilbert Huang Transform (HHT)
Introduction To Mean Shift
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
Some Effective Techniques for Naive Bayes Text Classification
Applications of Digital Signal Processing
Thinking of Instrumentation Survivability Under Severe Accident
報告人:丁英智 資策會 網路多媒體研究所 11/3/2006
SPC introduction.
Differential Equations (DE)
应用SAS/EM进行数据挖掘 赛仕软件研究所(上海)有限公司.
Noise & Distortion in Microwave Systems.
Stochastic Relationships and Scatter Diagrams
Sampling Theory and Some Important Sampling Distributions
Watershed Management--10
簡單迴歸模型的基本假設 用最小平方法(OLS-ordinary least square)找到一個迴歸式:
Shape(Structure) From X
ECCE Summer School for Advanced Study in Climate and Environment
第一章 敘述統計學.
Chapter 1 Introduction to Climate System
Coupling TRIGRS and TOPMODEL in shallow landslide Prediction
圖表製作 集中指標 0628 統計學.
The role of leverage in cross-border mergers and acquisitions
Outrigger Optimization for Super Tall Structures Under Multiple Constraints 多约束条件下超高结构伸臂系统优化.
有机酸类化感物质对甜瓜的化感效应 张志忠1,孙志浩1,陈文辉2,林文雄3, *
Comparison of Fuzzy and Kalman-Filter Target-Tracking control system
Tel: 第11章 SPSS在时间序列预测中的应用 周早弘 旅游与城市管理学院
Inventory System Changes and Limitations
Interval Estimation區間估計
參加2006 SAE年會-與會心得報告 臺灣大學機械工程系所 黃元茂教授
Chp9:参数推断 本节课内容:计算似然的极大值 牛顿法 EM算法.
学习报告 —语音转换(voice conversion)
BASIC PRINCIPLES IN OCCUPATIONAL HYGIENE 职业卫生基本原则
The Nature and Scope of Econometrics
卡尔曼滤波 The Kalman Filtering.
A high payload data hiding scheme based on modified AMBTC technique
生物統計 1 課程簡介 (Introduction)
第3章 預測 2019/4/11 第3章 預測.
相關統計觀念復習 Review II.
Design and Analysis of Experiments Final Report of Project
準確性(Accuracy) 誤差種類 儀器準確度 時間因素 儀器參數.
Safety science and engineering department
虚 拟 仪 器 virtual instrument
線性規劃模式 Linear Programming Models
Vector Quantization(VQ)
Inter-band calibration for atmosphere
A Data Mining Algorithm for Generalized Web Prefetching
Journal of Applied Meteorology, 39,
題目:衛星遙測於水質監測之應用 講者:中華大學土木工程學系 陳莉教授 時間:民國101年12月26日 遙測緣起與發展
An Efficient MSB Prediction-based Method for High-capacity Reversible Data Hiding in Encrypted Images 基于有效MSB预测的加密图像大容量可逆数据隐藏方法。 本文目的: 做到既有较高的藏量(1bpp),
Q & A.
 隐式欧拉法 /* implicit Euler method */
Speaker : YI-CHENG HUNG
5. Combinational Logic Analysis
Logistic回归 Logistic regression 研究生《医学统计学》.
Chapter 9 Validation Prof. Dehan Luo
指導教授:趙景明 教授 專題學生:張沛宇 王瑋德 許育愷
Lecture #10 State space approach.
Fei Chen and Jimy Dudhia April 2001 (Monthly Weather Review) 報告:陳心穎
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

袁 星 谢正辉,梁妙玲 中国科学院大气物理研究所 xyuan@mail.iap.ac.cn 2006.08.10 A Statistical Method for Recovering the Depth to Shallow Groundwater Table in China 袁 星 谢正辉,梁妙玲 中国科学院大气物理研究所 xyuan@mail.iap.ac.cn 2006.08.10

Background Data Methodology Validation & Application Summary

Groundwater 在全球总水量中,海洋占97%以上,偏远而难以利用的两极冰帽及冰川约占2%,其余不到1%才是人类可取用的水资源,而其中地下水的储存总量居冠。 地下水的过量开采会造成地下水位的大幅下降,引起地面沉降。地下水位过高会对农作物生长不利,造成渍害。因此,研究地下水位的动态对国计民生具有重大意义。

气候条件、植被地形和人类活动的变化能引起地下水埋深时空分布的变化;反之,大尺度地下水埋深的变化,导致土壤含水量、地表径流和基流的改变,进一步影响下垫面的蒸散发和低层大气感热和潜热的分配,从而对气候产生影响。 估计浅层地下水埋深变化对水资源研究、陆面过程模拟、陆地生态系统及陆气相互作用的研究具有重要意义。

Purpose To recover monthly data for the depth to shallow groundwater table since 1961 in continental China. Scheme Transfer function-noise (TFN) models & parameter transfer method.

Data Meteorological Data (1961-2000) Soil Data Groundwater Daily time-series of precipitation, maximum temperature, and minimum temperature are obtained by interpolating station values from 740 meteorological stations in China. Soil Data The soil texture information is derived from Food and Agriculture Organization dataset (FAO). Groundwater Phreatic data from monitor wells.

Locations of the meteorological stations

Locations of wells interpolated into 60×60 km2 grids

MethodologyⅠ: Calibration

TFN model

Input: precipitation surplus (precipitation minus potential evapotranspiration). The instantaneous evaporative demand (mm/s) is calculated following Jarvis and McNaughton (1986): 干湿常数,净辐射通量,饱和水汽压和温度比率

TFN model State-space representation

A linear discrete stochastic system State equation Measurement equation

Recursive application of the Kalman filter If no observation taken at time t If there is an observation at time t

Running the Kalman filter for the calibration period with a parameter set resulting in the following objective function: Using SCE-UA (shuffled complex evolution method developed at The University of Arizona) method to minimize the objective function.

(calculate the criterion values) Identification of TFN model Transform data to improve normality and stationarity, and determine parameters which will be calibrated. Representation of TFN model in vector notations(state space form) Generate sample Sample s points randomly in the feasible parameter space. Running Kalman filter for Optimal prediction (calculate the criterion values) Rank points Sort the s points in order of increasing criterion value. Partition and evolve Partition the s points into p complexes,evolve each complex Shuffle complexes Combine the points into a single sample population. convergence criteria satisfied? Yes Output calibrated parameters No Flow chart: the calibration method of TFN model

Methodology Ⅱ: Parameter Transfer

1 Tropical climate 2 Dry, cold climate 1936 1 Tropical climate 2 Dry, cold climate 3 Rainy, midlatitude climate 4 Continental climate with hot summer 5 Continental climate with cool summer 6 Continental climate with short cool summer

聚类 (clustering) 基于平方误差的聚类 基于概率密度估计的聚类 层次聚类 基于图的聚类 模糊聚类 基于神经元网络的聚类 K均值(K-Mean) 基于概率密度估计的聚类 高斯混合模型:GMM 核密度估计:mean-shift 层次聚类 基于图的聚类 模糊聚类 基于神经元网络的聚类

高斯混合模型(GMM) (Mixture of Gaussians Model) 基本思想:将聚类视为一个概率密度估计问题 给定一堆多峰分布的数据,估计其概率密度

Expectation-Maximum likelihood (EM) Algorithm

EM Algorithm

Validation of TFN models Mean Absolute Error: 0.18m 0.15m 0.19m 0.15m

Estimation and 95% confidence intervals of the depth to groundwater table for the four grids

Moving average parameter of transfer model Autoregressive parameter of transfer model

Autoregressive parameter of noise model Variance of noise series

Cross Validation

Time series of errors for cross validation. (a) ME(t); (b) RMSE(t); (c) MAE(t)

东北、华东:夏秋浅冬春深;华北、中原:夏秋深冬春浅;华南:春夏浅秋冬深,降水补给;长江中游:夏浅,其余深,河流补给

r=0.003 r=0.357 r=0.293 显著性系数0.06,68.4%

Reconstruction Scheme Transfer function-noise (TFN) models are calibrated by SCE-UA method coupled with Kalman filter in each observed grids. Parameters for gauged grids are transferred to ungauged grids by GMM clustering method based on soil property data and 40-years meteorologic data such as precipitation and temperature. The depth to groundwater table for continental China are estimated by the TFN models with parameters calibrated or transferred.

Conclusions (1) Validated by phreatic data, TFN models not only provide results with high accuracy, but also can quantify the prediction uncertainty reasonably well. (2) Cross validation shows that the parameter transfer scheme is an effective way for the recovery. (3) The seasonal variations of recharge and discharge for groundwater in China are obtained by our scheme. (4) The second EOF match the pattern of mean depth of the groundwater reasonably well.

Future work Further validation and modification of our data by satellite data such as GRACE. Assessing the improvement of Land surface model or climate model, running with initial conditions provided by the recovered data.

谢谢指导! Thank You!