发电厂及变电站电气设备 2 电力系统中性点的运行方式 主 编:李家坤 朱华杰 主 审:陈光会

Slides:



Advertisements
Similar presentations
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
Advertisements

2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
丰台货运口岸 平谷国际陆港 通州口岸(在建). 北京口岸布局 北京平谷 国际陆港 首都机场 空港口岸 北京西站 铁路口岸 北京新机场 空港口岸 北京丰台 货运口岸 北京朝阳口岸 通州口岸 (在建) 天竺综合 保税区 亦庄保税物流 中心( B 型)
电 力 工 程.
提高电力系统稳定性的措施.
电气工程基础电子教案 不对称短路故障分析.
发电厂及变电站电气设备 11 电气总布置 主 编:李家坤 朱华杰 主 审:陈光会
电力系统过电压.
西南交通大学电气工程学院 电力系统继电保护原理 -- 课程复习 二零一零年十二月.
继电保护原理 刘学军 编制. 第二章 互感器及变换器 中国电力出版社 第三节 变换器 常用变换器有电压变换器 (UV), 电流变换器 (UA) ,电抗变换器 (UX) 。 一. 电压变换器 二. 电流变换器 三. 电抗变换器.
项目一(1).
2.6 节点电压法. 2.6 节点电压法 目的与要求 1.会对三节点电路用节点电压法分析 2.掌握弥尔曼定理.
三相交流电路 三相电路在生产上应用最为广泛。发电、输配电和主要电力负载,一般都采用三相制。 三相交流发电机是产生正弦交流电的主要设备。
主 编:李 文 王庆良 副主编:孙全江 韦 宇 主 审:于昆伦
第5章 三相电路 5.1 三相电压 5.2 负载星形联结的三相电路 5.3 负载三角形联结的三相电路 5.4 三相功率.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第7章 正弦交流电路 7.1 正弦交流电基本概念 Go! 7.2 正弦量的相量表示法 Go! 7.3 纯电阻的交流电路 Go!
三相交流电路 主要授课内容 三相电源、负载连接方式及其电路分析 第1章.
工厂供电 电气工程与自动化系 白耀鹏.
第2期 第1讲 电源设计 电子科技大学.
现代电子技术实验 4.11 RC带通滤波器的设计与测试.
三相负载的功率 §7-3 学习目标 1.掌握三相对称负载功率的计算方法。 2.掌握三相不对称负载功率的计算方法。
前情提要: 定时限电流速断保护(电流Ⅲ段)整定计算 1、动作电流整定 2、动作时间整定 3、灵敏性校验 定时限电流速断保护(电流Ⅲ段)构成.
5.1 三相电压.
第5章 三相电路 5.1 三相电压 5.2 负载星形联结的三相电路 5.3 负载三角形联结的三相电路 5.4 三相功率.
第二章(2) 电路定理 主要内容: 1. 迭加定理和线性定理 2. 替代定理 3. 戴维南定理和诺顿定理 4. 最大功率传输定理
第一章 半导体材料及二极管.
第二章 双极型晶体三极管(BJT).
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
线段的有关计算.
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
物理 九年级(下册) 新课标(RJ).
实验4 三相交流电路.
第十七章 第4节 欧姆定律在串、并联电路中的应用 wl com.
第三章:恒定电流 第4节 串联电路与并联电路.
Three stability circuits analysis with TINA-TI
WPT MRC. WPT MRC 由题目引出的几个问题 1.做MRC-WPT的多了,与其他文章的区别是什么? 2.Charging Control的手段是什么? 3.Power Reigon是什么东西?
一、交流接触器 1.结构 触头系统:主触头、辅助触头 常开触头(动合触头) 常闭触头(动断触头) 电磁系统:动、静铁芯,吸引线圈和反作用弹簧
第8章  自动重合闸 第一节 自动重合闸的作用及要求 第二节 单侧电源线路的三相一次自动重合闸 第三节 双侧电源线路的三相一次重合闸.
1.熟练掌握纯电感电路中电流与电压的相位关系和数量关系。
PowerPoint 电子科技大学 R、C、L的相位关系的测量.
工厂高压线路的继电保护 一、概述 按GB规定,对3~66KV电力线路,应装设: 带时限的过电流保护 1.相间短路保护 电流速断保护
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
三相异步电动机 正反转控制电路 ——按钮操作接触器触点联锁的 电动机正反转控制电路.
第 8 章 直流稳压电源 8.1 概述 8.2 稳压管稳压电路 8.3 具有放大环节的串联型稳压电路 8.4 稳压电路的质量指标.
第4课时 绝对值.
第五章 三相电路 5.1 对称三相电源及联结 5.2 对称三相负载及其连接 5.3 三相电路的计算 5.4 三相电路的功率及其测量
电气与电子工程学院 电力系统接地方式 华中科技大学 刘浔 CEEE, HUST.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
第4章 三相电路 本章主要内容 本章主要介绍对称三相电压;三相电路的连接方式;在不同连接方式下线电压、相电压、线电流、相电流的关系;对称与不对称三相电路电压、电流和功率的计算。 照明灯如何接入电路? 【引例】 什么是三相四线制? 三相四线制电路供电示意图.
四 电动机.
实验二 基尔霍夫定律 510实验室 韩春玲.
第五章 接地系统和接地装置简介 第 3 章 接地系统 r 一般规则 不同型式的接地系统 1 r 2.
講題 :課程發展委員會的組織與運作機制 主講人:臺北市立明倫高中 教務主任王文珠.
电工基础 第一章 基础知识 第二章 直流电路 第三章 正弦交流电路 第四章 三相电路 第五章 磁路与变压器 上一页 下一页 返 回.
复习: 欧姆定律: 1. 内容: 导体中的电流与导体两端的电压成正比,与导体的电阻成反比。 2. 表达式: 3. 变形公式:
监 测 继 电 器 EMR4.
13.5 怎样认识和测量电压.
《智能仪表与传感器技术》 第一章 传感器与仪表概述 电涡流传感器及应用 任课教师:孙静.
第五章 过电压保护 一、单选题 1、国家相关标准中规定10KV系统中最高工作电压是( )。 A、11KV B、11.5KV C、12 KV
大亚湾核电站 秦山核电站 三峡水电站 新疆风力发电.
第六章 三相电路 6-1 三相电路基本概念 一、三相电源 uA uB uC uC uB uA 时域特征: o t.
2.5.3 功率三角形与功率因数 1.瞬时功率.
电阻的串联 2014机电班.
在我们生活中,哪些地方用到了电?.
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
Presentation transcript:

发电厂及变电站电气设备 2 电力系统中性点的运行方式 主 编:李家坤 朱华杰 主 审:陈光会 FADIANCHANG JI BIANDIANZHAN DIANQISHEBEI 2 电力系统中性点的运行方式 主 编:李家坤 朱华杰 主 审:陈光会

目 录 2 电力系统中性点的运行方式 2.1 中性点不接地系统 2.2 中性点经消弧线圈接地系统 2.3 中性点直接接地系统 目 录 2 电力系统中性点的运行方式 1 2.1 中性点不接地系统 2.2 中性点经消弧线圈接地系统 2 2.3 中性点直接接地系统 3 2.4 中性点不同接地方式的应用范围 4

3.掌握中性点经消弧线圈接地系统的概念、消 弧线圈的结构及工作原理; 4.掌握消弧线圈的补偿方式; 5.掌握中性点直接接地系统的基本概念。 2 电力系统中性点的运行方式 【知识目标】 1.了解电力系统中性点运行方式的种类; 2.了解中性点不接地系统的基本概念; 3.掌握中性点经消弧线圈接地系统的概念、消 弧线圈的结构及工作原理; 4.掌握消弧线圈的补偿方式; 5.掌握中性点直接接地系统的基本概念。 【能力目标】 1.能够区别电力系统中性点运行方式的运行特点; 2.能够理解消弧线圈的补偿方式; 3.能够理解中性点三种运行方式的应用范围。

2 电力系统中性点的运行方式 电力系统中性点是指三相绕组作星形连接的变压器和发电机的中性点。电力系统中性点与大地间的电气连接方式,称为电力系统中性点接地方式(即中性点运行方式)。电力系统中性点的运行方式,可分为中性点非有效接地和中性点有效接地两大类。中性点非有效接地包括中性点不接地、中性点经消弧线圈接地和中性点经高电阻接地的系统,当发生单相接地时,接地电流被限制到较小数值,故又称为小接地电流系统;而中性点有效接地包括中性点直接接地和中性点经小阻抗接地的系统,因发生单相接地时接地电流很大,故又称为大接地电流系统。

2 电力系统中性点的运行方式 我国电力系统广泛采用的中性点接地方式主要有中性点不接地、中性点经消弧线圈接地及中性点直接接地三种。 电力系统中性点的运行方式不同,其技术特性和工作条件也不同,还与故障分析、继电保护配置、绝缘配合等均密切相关。采用哪一种中性点运行方式,直接影响到电网的绝缘水平、系统供电的可靠性和连续性、电网的造价以及对通信线路的干扰程度。

2.1 中性点不接地系统 2.1 中性点不接地系统

2.1 中性点不接地系统 2.1.1 正常运行 中性点不接地的电力系统正常时的电路图和相量图如图2.1所示,三相线路的相间及相与地间都存在着分布电容。这里只考虑相与地间的分布电容,且用集中电容来表示,如图2.1(a)所示。 系统正常运行时,三相相电压、、是对称的,三相的对地电容电流也是对称的,如图2.1(b)所示。这时三相的对地电容电流的相量和为零,因此没有电流在地中流过。各相对地电压均为相电压。

2.1 中性点不接地系统 图2.1 正常运行时的中性点不接地系统 (a) 电路图 (b) 相量图

2.1 中性点不接地系统 2.1.2 单相接地故障 当系统发生单相接地故障时.假设C相发生金属接地,其接地电阻为零,如图2.2(a)所示,这时C相对地电压为零,而非故障相A、B相的对地电压在相位和数值上都发生改变。即: (2.1 )

2.1 中性点不接地系统 图2.2 发生单相接地故障时的中性点不接地系统 (a) (b) 图2.2 发生单相接地故障时的中性点不接地系统 (a) 电路图 (b) 相量图

2.1 中性点不接地系统 如图2.2(b)所示。C相接地故障时,非故障相A相和B相对地电压值升高为倍,变为线电压。因此,这种系统的设备的相绝缘不能只按相电压来考虑,而要按线电压来考虑。 C相接地时,系统的接地电流(接地电容电流) 为A、B两相对地电容电流之和, 即 : 由图2.2(b)的相量图可知, 在相位上正好超前C相电压 90°。由于 ,其中 ,因此 , (2.2 )

2.1 中性点不接地系统 即系统单相接地时的接地电容电流为正常运行时每相对地电容电流的3倍。 由于线路对地电容C难于准确确定,所以 和 也不好根据电容C来准确计算,在工程中通常采用下列经验公式来计算: 式中 ——中性点不接地系统的单相接地电容 电流,A; ——电网额定线电压kV; (2.3 )

2.1 中性点不接地系统 ——同一电压 具有电气联系的架空线 路总长度km; ——同一电压 具有电气联系的电缆线 路总长度km。 当系统某一相发生故障,而故障相通过一定的阻抗接地,称为不完全接地。此时,接地相电压大于零而小于相电压,非故障相对地电压则大于相电压而小于线电压。接地电流也比完全接地时小。其具体的电压、电流值与故障相接地电阻值有关。

2.1 中性点不接地系统 单相接地故障时,由于线电压保持不变,对电力用户没有影响,用户可继续运行,提高了供电可靠性。理论上长期带单相接地故障运行不会危及电网绝缘,但实际上是不允许过分长期带单相接地运行的,因为未故障相电压升高为线电压,长期运行可能在绝缘薄弱处发生绝缘破坏而造成相间短路。 因此,为防止由于接地点的电弧及伴随产生的过电压,使系统由单相接地故障发展为多相接地故障,引起故障范围扩大,所以在这种系统中必须装设交流绝缘监察装置,当发生单相接地故障时,发出报警信号或指示,以提醒运行值班人员注意,及时采取措施,查找和消除接地故障;

2.1 中性点不接地系统 如有备用线路,则可将重要负荷转移到备用线路上,当危及人身和设备安全时,单相接地保护应动作于跳闸。 电力系统的有关规程规定:在中性点不接地的三相系统中发生单相接地时,允许继续运行的时间不得超过2小时,并要加强监视。 由于非故障相的对地电压升高到线电压,所以在这种系统中,电气设备和线路的对地绝缘必须按能承受线电压考虑设计,从而相应地增加了投资。

2.2 中性点经消弧线圈接地系统 2.2 中性点经消弧线圈接地系统

2.2 中性点经消弧线圈接地系统 中性点不接地系统,具有单相接地故障时可继续给用户供电的优点,即供电可靠性比较高,但有一种情况比较危险,即在发生单相接地时,如果接地电流较大,将在接地点产生断续电弧,这就可能使线路发生谐振过电压现象,因此不宜用于单相接地电流较大的系统。 为了克服这个缺点,可将电力系统的中性点经消弧线圈接地。

2.2 中性点经消弧线圈接地系统 2.2.1 消弧线圈的结构及工作原理 消弧线圈实际上是一种带有铁芯的电感线圈,其电阻很小,感抗很大,其铁芯柱有很多间隙,以避免磁饱和,使消弧线圈有一个稳定的电抗值。 消弧线圈有多种类型,包括离线分级调匝式、在线分级调匝式、气隙可调铁心式、气隙可调柱塞式、直流偏磁式、直流磁阀式、调容式、五柱式等。 系统正常运行时,中性点电位为零,没有电流流过消弧线圈。

2.2 中性点经消弧线圈接地系统 当系统发生单相接地时,流过接地点的总电流是接地电容电流 与流过消弧线圈的电感电流 的相量和。由于 超前 90°,而 滞后 90°,如图2.3(b)所示,所以 和 在接地点互相补偿,可使接地电流小于最小生弧电流,从而消除接地点的电弧以及由此引起的各种危害。 另外,当电流过零而电弧熄灭后,消弧线圈还可减小故障相电压的恢复速度,从而减小了电弧重燃的可能性,有利于单相接地故障的消除。

2.2 中性点经消弧线圈接地系统 图2.3 中性点经消弧线圈接地的电力系统 (a)电路图;(b)相量图

2.2 中性点经消弧线圈接地系统 中性点经消弧线圈接地的系统发生单相接地故障时,与中性点不接地的系统中发生单相接地故障时一样,接地相对地电压为零,非故障相对地电压升高 倍。由于相间电压没有改变,因此三相设备仍可以正常运行。但也不能长期运行,必须装设单相接地保护或绝缘监视装置,在单相接地时给予报警,提醒运行值班人员注意,及时采取措施,查找和消除故障,如必要时将重要负荷转移到备用线路上。

2.2 中性点经消弧线圈接地系统 2.2.2 消弧线圈的补偿方式 用补偿度(也称调谐度) 或脱谐度 表明单相接地故障时消 弧线圈的电感电流 对接地电容电流 的补偿程度。 根据消弧线圈的电感电流对接地电容电流补偿程度不同,有三种补偿方式:完全补偿、欠补偿和过补偿。

2.2 中性点经消弧线圈接地系统 (1)完全补偿 完全补偿,简称全补偿,是使电感电流等于接地电容电流,即 ,亦即 ,接地处电流为零。从消弧角度来看,完全补偿方式十分理想,但实际上却存在着严重问题。因为正常运行时,在某些条件下,如线路三相的对地电容不完全相等或断路器三相触头不同时合闸时,在中性点与地之间会出现一定的电压,此电压作用在消弧线圈通过大地与三相对地电容构成的串联回路中,此时感抗 与容抗 相等,满足谐振条件,形成串联谐振,产生谐振过电压,危及系统的绝缘,因此在实际电力工程中通常不采用完全补偿方式。

2.2 中性点经消弧线圈接地系统 (2)欠补偿 欠补偿是使电感电流小于接地的电容电流,即 ,亦即 ,接地点尚有未补偿的电容性电流。欠补偿方式也较少采用,原因是在检修、事故切除部分线路或系统频率降低等情况下,可能使系统接近或达到全补偿,以致出现串联谐振过电压。

2.2 中性点经消弧线圈接地系统 (3)过补偿 过补偿是使电感电流大于接地的电容电流,即 ,亦即 ,接地点处尚有多余的电感性电流。过补偿可避免谐振过电压的产生,因此得到广泛应用。过补偿接地处的电感电流也不能超过规定值,否则电弧也不能可靠地熄灭。因此,消弧线圈设有分接头,用以调整线圈的匝数,改变电感值的大小,从而调节消弧线圈的补偿电流,以适应系统运行方式的变化,达到消弧的目的。

2.2 中性点经消弧线圈接地系统 根据规程规定,消弧线圈一般采用接近谐振的过补偿方式。与中性点不接地系统一样,中性点经消弧线圈接地系统发生单相接地故障时,允许运行不超过2h,在这段时间内,运行人员应尽快采取措施,查出接地点并将它消除;如在这段时间内无法消除接地点,应将接地的部分线路停电,停电范围越小越好。

2.2 中性点经消弧线圈接地系统 在正常运行时,如果中性点的位移电压过高,即使采用了消弧线圈,在发生单相接地时,接地电弧也难以熄灭。因此,要求中性点经消弧线圈接地的系统,在正常运行时其中性点的位移电压不应超过额定相电压的15%,接地后的残余电流值不能超过5~10A,否则接地处的电弧不能自行熄灭。

2.3 中性点直接接地系统 2.3 中性点直接接地系统

2.3 中性点直接接地系统 随着电力系统输电电压的增高和输电距离的不断增长,单相接地电流也随之增大,中性点不接地或经消弧线圈接地的运行方式已不能满足高压系统正常、安全、经济运行的要求。针对这些情况,电力系统中性点可经采用直接接地的运行方式,即中性点直接与大地相连。

如图2.4所示为中性点直接接地系统的工作原理图。 2.3 中性点直接接地系统 2.3.1 中性点直接接地系统的工作原理 如图2.4所示为中性点直接接地系统的工作原理图。 图2.4 中性点直接接地系统的工作原理图

2.3 中性点直接接地系统 正常运行时,由于三相系统对称,中性点的电压为零,中性点没有电流流过。当系统中发生单相接地时,由于接地相直接通过大地与电源构成单相回路,故称这种故障为单相短路。单相短路电流 很大,继电保护装置应立即动作,使断路器断开,迅速切除故障部分,不会产生稳定电弧或间歇电弧,系统其它部分仍能正常运行。

2.3 中性点直接接地系统 2.3.2 中性点直接接地系统的特点 中性点直接接地系统中发生单相接地时,相间电压的对称关系被破坏,但未发生接地故障的两完好相的对地电压不会升高,仍维持相电压。因此,中性点直接接地系统中的供电设备的相绝缘只需按相电压来考虑。这对110kV及以上的高压系统来说,具有显著的经济技术价值,因为高压电器,特别是超高压电器,其绝缘问题是影响电器设计制造的关键问题。电器绝缘要求的降低,直接降低了电器的造价,同时也改善了电器性能。

2.3 中性点直接接地系统 中性点直接接地系统中发生单相接地即形成单相短路,必须立即断开电路,这样造成的后果是短期停电(重合闸成功),或者是长期停电(永久性故障,则重合闸不成功)。此外,在短路过程中,巨大的短路电流引起的电动力和热效应可能使一些电气设备造成损坏。一些断路器由于切断短路电流的次数增加,会增加其维护检修的工作量。 中性点直接接地系统中发生单相接地故障时,大的接地电流对邻近的通信线路干扰大,感应电压可能危及工作人员安全或引起信号装置误动作,因此,电力线和通信线间必须保持一定的距离。

2.3 中性点直接接地系统 此外,中性点直接接地系统发生单相接地时,由于接地电流很大,电压的剧烈下降、线路的突然切除可能导致系统稳定的破坏。

2.4 中性点不同接地方式的应用范围 2.4 中性点不同接地方式的应用范围

2.4 中性点不同接地方式的应用范围 选择电力系统中性点接地方式是一个综合性问题,它与电压等级、单相接地短路电流、过电压水平、保护配置有关,直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全以及对通信线路的干扰。实际电力系统中,不同中性点接地方式应用范围大致如下: (1)3~10kV系统电压不高,绝缘费用在总投资中所占比重不大,同时这个电压等级配电线路总长度长,雷击瞬间跳闸事故多,因而着重考虑供电可靠性问题。

2.4 中性点不同接地方式的应用范围 一般多采用中性点不接地系统,仅在线路长或有电缆线路而且单相接地电流越限(单相接地电流>30A)时,才采用经消弧线圈接地方式。当发电机或调相机直接接在3~20kV电网,为了避免因电机内部故障产生电弧烧坏电机,若单相接地电流大于5A,也应装消弧线圈。 (2)35~66kV系统和3~10kV系统相似,降低绝缘水平经济价值不甚显著,同时,这个电压等级都未全线架设避雷线,雷击事故较多,供电可靠性也是主要问题。虽然可采用中性点不接地系统,但由于35~66kV系统电网线路总长度一般都超过100km,单相接地电流超过限制,因此多采用经消弧线圈接地方式。

2.4 中性点不同接地方式的应用范围 (3)110kV系统及以上系统,由于电压升高,绝缘费用在总投资中所占比重增大,供电可靠性则可通过全线架设避雷线和采用自动重合闸加以改善。因此,我国110kV及以上系统广泛采用中性点直接接地方式。 此外,电压在500V以下的三相三线制系统采用中性点不接地运行方式,220/380V三相四线制系统采用中性点直接接地运行方式。

小 结 电力系统中性点是指三相绕组作星形连接的变压器和发电机的中性点。电力系统中性点与大地间的电气连接方式,称为电力系统中性点接地方式,也叫中性点运行方式。中性点不接地、中性点经消弧线圈接地属于小接地电流系统,中性点直接接地属于大接地电流系统。 我国电力系统广泛采用的中性点接地方式主要有中性点不接地、中性点经消弧线圈接地及中性点直接接地三种。

小 结 中性点不接地系统和中性点经消弧线圈接地系统,单相接地故障时,中性点对地电压、各相对地电压都发生变化,但由于线电压保持不变,对电力用户没有影响,用户可继续运行,提高了供电可靠性。电气设备和线路的对地绝缘必须按能承受线电压考虑设计,从而相应地增加了投资。这两种系统中必须装设交流绝缘监察装置,当发生单相接地故障时,发出报警信号或指示,以提醒运行值班人员注意,及时采取措施。故这两种系统多用在110KV以下系统。

小 结 中性点直接接地系统中发生单相接地时,相间电压的对称关系被破坏,但未发生接地故障的两完好相的对地电压不会升高,仍维持相电压。因此,中性点直接接地系统中的供电设备的相绝缘只需按相电压来考虑。但是,中性点直接接地系统发生单相接地故障时,接地电流很大,必须立即切除故障部分,中断用户供电。故这种系统多用在110KV及以上系统。

发电厂及变电站电气设备 Thank You! FADIANCHANG JI BIANDIANZHAN DIANQISHEBEI 武汉理工大学出版社发行部 http://www.techbook.com.cn 地 址:武汉市武昌珞狮路122号 邮 编:430070 电 话:027-87394412 87383695 传 真:027-87397097