Research Status--- High-Efficiency Organic Light-Emitting Diode

Slides:



Advertisements
Similar presentations
國立台灣師範大學 國際人力資源發展研究所 施正屏博士
Advertisements

日月光人力需求簡介 Robert Guo.
1833—1896 金属有机化学与诺贝尔奖 合化1102班 李海芳.
(复习课) 光学复习.
Journal of Semiconductors 半导体学报
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
周芳妃 北一女中 97學年度高級中學夥伴學習群專業成長化學科研習
SHARE with YOU Why am I here? (堅持……) What did I do?
EUKE MAGTECH LIMITE 欧科磁业技术有限公司
版權所有 翻印必究 指導教授:林克默 博士 報告學生:許博淳 報告日期: 2011/10/24. 版權所有 翻印必究 Results and discussion The crystalline peak at 33° corresponds to the diffraction of the (200)
透過成長在矽基板上的氧化緩衝層與嵌入式氧化釔分佈布拉格反射鏡去增強氮化鎵系列的uv光檢測器響應
Student : Shian-yi yang Student ID:M99L0107
Thinking of Instrumentation Survivability Under Severe Accident
國立彰化師範大學物理系 Reporter:楊勝州
 電子材料   -短小.輕薄的電子世界.
能發光最美 電激發光高分子材料(PLED) 國立成功大學 化工系 陳 雲 液晶高分子材料、高分子奈米材料、聚氨酯材料
實 驗 研 究 法 多因子實驗設計 指導老師:黃萬居教授 學生:陳志鴻 m
大安高工 電子科 張 洧 資料提供 臺灣科技大學 電子工程系 陳伯奇教授
氮化銦鎵藍光發光二極體效率衰退之抑制 Reduction of efficiency droop in Blue InGaN LEDs
BTS3911E 一体化站点解决方案 支持UL平滑演进,降低CAPEX 小站点,大容量,提升用户体验 高集成度 ,降低部署成本
ITO薄膜晶体管辅助层的文献调研 姓名:刘洋 学号: 研究小组:TFT一组 薄膜晶体管与先进显示技术实验室
Thorjorn Larssen Norwegian Institute for Water Research – NIVA 挪威水研究所
复杂体系中分子相互作用的NMR研究—挑战与应对
– MiNa Material and Machining Lab – 創新的玻璃輔助二氧化碳雷射對矽的加工技術
第四章 磷光(Phosphorescence)材料與白光有機發光二極體元件 4.1 前言 4.2 有機發光二極體三重態發光物質的原理
Noise & Distortion in Microwave Systems.
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
EVS-05-27e Action items7 China will provide language for low battery energy warning by next EVS IG meeting.
组合逻辑3 Combinational Logic
製程能力分析 何正斌 教授 國立屏東科技大學工業管理學系.
Research status on OLED 報告者:張永政
Quantum Computer B 電機三 莊子德
第一組 林雨農 陳栢林 陳子敬 陳昶宏 吳志杰 吳佳靜 吳宇耕 吳侑儒 葉明婷 閻正剛 王婉馨 李依純
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
Understanding the Supply Chain
辐射带 1958年:探险者一号、探险者三号和苏联的卫星三号等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。 这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。
2012清大電資院學士班 「頂尖企業暑期實習」 經驗分享心得報告 實習企業:工業技術研究院 電光所 實習學生:電資院學士班  呂軒豪.
MS Contacts & Schottky Diodes
Low Cost Materials for High Energy Sodium-ion Battery
A high payload data hiding scheme based on modified AMBTC technique
推动全球能源变革,以创造清洁、安全、繁荣的低碳未来。
有机发光二极管(OLED) 光信息 李文龙.
Social Process & Relationship
(III-Se) and IIISe/Graphene heterostructure Photodetectors
Mechanics Exercise Class Ⅰ
交流阻抗的量測與分析 交流阻抗 (AC Impedance) 電阻的阻抗 Z=R 電容的阻抗 電感的阻抗 Z〞 ω變大 R Z′
Safety science and engineering department
虚 拟 仪 器 virtual instrument
半導體原理及應用 (II) 陳志方 國立成功大學 電機工程學系 1/15/06.
LED Basic Knowledge 2015/11/23 碩研電子一甲 黃聖翔 HUANG SHENG SIANG.
Organic light-emitting diodes with multiple quantum wells
使用ALD在一般HEMT結構上沉積氧化鋁Al2O3當成閘汲絕緣層形成MOSHEMT
Inter-band calibration for atmosphere
半導體專題實驗 實驗一 熱電性質與四點探針方法.
Bulk MicroMegas 和 GEM膜的研制与测试
Composition and Surface Controlled High-Performance Catalysts
Social Process & Relationship
Q & A.
Nucleon EM form factors in a quark-gluon core model
Efficient Query Relaxation for Complex Relationship Search on Graph Data 李舒馨
Q1: How do we determine the crystal structure?
动词不定式(6).
Resources Planning for Applied Research
句子成分的省略(3).
Lecture #10 State space approach.
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
健康按摩法 請開音樂.
Principle and application of optical information technology
第七章 振动和波.
Presentation transcript:

Research Status--- High-Efficiency Organic Light-Emitting Diode 九十二學年度第二學期Grooup Meeting Research Status--- High-Efficiency Organic Light-Emitting Diode Reporter: Hsiu-Fen Chen Adviser: Dr. Kuo Date: 2004/04/06

Outline The content is mainly extracted from IEEE JSTQE, Vol. 8, March/April 2002, p.346-361. The authors are N. K. Patel, S. Cinà, and J. H. Burroughes. 4 major Losses (and improvements) of OLED: Charge balance Singlet triplet ratio Luminescence efficiency Optical output coupling 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

Typical device structure 電洞傳輸層 金屬陰極 Glass substrate 有機層 透明陽極(ITO) OLED can be divided into 2 kinds: small molecules (小分子) OLED and conjugated polymer (共軛高分子) OLED. This is a typical device architecture for a polymer based OLED. 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

The equation of the external quantum efficiency (ηext) ext =   rst  q  coupling ext : the external quantum efficiency  : the coefficient of charge balance rst : the singlet triplet ratio q : the luminescence efficiency coupling : the coefficient of output coupling 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

Charge balance The maximum quantum efficiency is achieved when both cathode and anode form an ohmic contact with the polymer (i.e., there is no barrier for charge injection from the metal into the polymer layer), and when the mobility of the two carriers is identical. However, barriers (位能障) are almost always present at the polymer electrode interface. The mobility of the two carriers is rarely matched in organic semiconductors. It can differ by several orders of magnitude, and the relative difference can be a function of the applied electric field. This inequality effects on charge balance, on excitons formations, on the recombination process, and on device efficiency. 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

How to improve the charge balance? In order to minimize the barriers for charge injection, the work function of the electrode should be as close as possible to the energy levels of the organic layer. Indium-doped Tin Oxide (ITO) is normally used for the transparent anode, due to its relatively high work function. Cathode requires the use of low work function metals, usually Ca, Ba, Mg, and Yb. Polymers or copolymers can be used in order to improve charge balance and to optimize the device efficiency. 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

Singlet triplet ratio The singlets can relax radiatively (Fluorescence, 螢光), whereas for the triplet states relaxation occurs via nonradiative processes. Recent studies have shown that the singlet to triplet ratio is close to 1:1 in polymer devices as opposed to 1:3 for small molecules. Improvement: Triplets can radiate phosphorescece (磷光) through doping. [Ex. IEEE LEOS 2003– High Efficiency Phosphorescent OLED Technology] 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

How to improve the triplets How to improve the triplets? Schematic diagram of the fluorescent and phosphorescent transitions for host–guest systems. 螢光 磷光 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

How to improve the triplets? Photoluminescence traces 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

Luminescence efficiency Important factors leading to the reducing of luminescent efficiency in OLED devices is the presence of impurities diffusing from the electrodes into the organic layer and the interaction between the excitons and the metal electrodes. Thicker layers of cathode produce larger metal diffusion into the organic layer. Improvement: The cathode layers can’t be too thick while comparing with organic layers. 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

Optical output coupling The large mismatch between the refractive index of the polymer and air results in a large proportion of the light rays undergoing total internal reflection (as light tries to pass from a high to a low refractive index material). nair = 1 nglass = 1.5 nITO ~ 1.6 to 2.0 norg ~ 1.6 to 2.0 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

How to improve the output coupling? The techniques can be divided into two main categories: Method 1: Reduce the total internal reflection at the glass air interface. Method 2: Corrugating the emission region (like wave), altering the refractive index of layers in the device and patterning the device to produce photonic crystal behavior. 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

How to improve the output coupling? Method 1-1 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

How to improve the output coupling? Method 1-2 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

How to improve the output coupling? Method 2-1 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

How to improve the output coupling? Method 2-2 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

How to improve the output coupling? Method 2-3 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

How to improve the output coupling? Method 2-4 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

Conclusion There are many issues in putting these factors together to improve the efficiency of OLED. However, it still doesn’t meet commercial constraints for device applications. Development of highly efficient OLEDs has been rapid and is expected to maintain this pace in the future. The OLEDs will be the famous material in plane display applications after overcoming these losese. 2004/04/06 國立彰化師大藍光實驗室 陳秀芬

Thanks for your attention!! 2004/04/06 國立彰化師大藍光實驗室 陳秀芬