BEPCII/BESIII 工程 中国核学会,中国电子学会 核电子学与核探测技术分会年会 中科院高能物理所 2002年12 月2日,厦门

Slides:



Advertisements
Similar presentations
国家发展改革委能源局 Energy Bureau, NDRC 2005年11月18日
Advertisements

核技术应用与管理 曾志刚.
年度考核 高能所 吴智
日月光人力需求簡介 Robert Guo.
大亚湾反应堆中微子实验 曹 俊 中国科学院高能物理所 高能物理年会 2006.
加快数据中心运转速度 — 加速业务发展 约翰•福勒 甲骨文公司系统事业部执行副总裁. 加快数据中心运转速度 — 加速业务发展 约翰•福勒 甲骨文公司系统事业部执行副总裁.
DCE Market Data Business
HADOOP的高能物理分析平台 孙功星 高能物理研究所/计算中心
2012 Project Planning 2012 年技术规划
BEPCII在BESIII取数中 亮度超过 51032cm-2s-1
BESIII物理分析工具 黄彬
NCC委員會之軟性變革 --以知識管理系統導入全會應用之案例探討— 指導教授:李國光 博士
EUKE MAGTECH LIMITE 欧科磁业技术有限公司
Manufacture and performance of three 200×200mm² thermal-bonding Micromegas prototypes Zhiyong Zhang(张志永), Liang Guan(管亮),
Innovation Cooperation development
IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 3, MARCH 2013
开关磁阻电机在风力发电中的应用 香港理工大学 电力电子研究中心 Dept. of Electrical Engineering
Platypus — Indoor Localization and Identification through Sensing Electric Potential Changes in Human Bodies.
Thinking of Instrumentation Survivability Under Severe Accident
广西大学—国家天文台天体物理与空间科学研究中心 China-VO and Astroinformatics
Good Afternoon. 威世智中国员工及 组织化赛事介绍 WotC China Staff and Organized Play Instruction Shane Xu
優質教育基金研究計劃研討會: 經驗分享 - 透過Web 2.0推動高小程度 探究式專題研習的協作教學模式
现场总线Fieldbus.
Purposes of Mold Cooling Design
C H A P T E R 10 存储器层次.
VAC电流传感器用于工业电源 VAC Current Sensors for Industrial Applications
CJPL中0vDBD实验 读出电子学初步设计
Noise & Distortion in Microwave Systems.
Logistics 物流 昭安國際物流園區 總經理 曾玉勤.
China Standardization activities of ITS
製程能力分析 何正斌 教授 國立屏東科技大學工業管理學系.
緣由 由於積體電路(Integrated Circuit, IC)製造技術的精進,系統設計已由運用個別積體電路功能整合的方式進步至系統晶片(System-on-a-Chip, SoC) 設計的世代。原本分屬不同設計範疇的類比(Analog)積體電路設計與數位(Digital)積體電路設計已經必須同時整合,而進入新的混合訊號(Mixed-Signal)積體電路設計的世代。
Quantum Computer B 電機三 莊子德
HOM damping methods for CEPC
基于THGEM的DHCAL初步研究 俞伯祥、章爱武 “核探测与核电子学” 国家重点实验室 高能所 实验中心
普通物理 General Physics 29 - Current-Produced Magnetic Field
聲轉電信號.
Studies on Higgs with the Final Sates of WW and bb
Direct detection of WIMP
乐景彭 Le Jingpeng 上海市经济委员会副主任 Vice Director Shanghai Economic Commission
參加2006 SAE年會-與會心得報告 臺灣大學機械工程系所 黃元茂教授
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
DOE II建築節能模擬軟體介紹 -空調節能設計篇
赵忠尧奖学金申请报告 刘宏邦 合作导师:郑阳恒.
Fundamentals of Physics 8/e 28 - Magnetic Force
高能物理研究計劃 王子敬 中央研究院 Institute of Physics, Academia Sinica.
Measurement of the continuum Ruds, Ruds(c)+Ψ(3770) and Rhad values in the range from to GeV 张达华 (for BES Collaboration) Institute of High Energy.
国家重点研发计划 大型强子对撞机(LHC)实验探测器升级 课题2:ATLAS 实验缪子探测器升级 年度进展--BI RPC
学 术 报 告 北京化工大学化工资源有效利用国家重点实验室
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
BESIII上t质量 测量现状 张建勇 高能所 代表BESIII t 物理组 中国物理学会高能物理分会第九届全国 会员代表大会暨学术年会
束流负载效应和 高频直接反馈 张闯 (提供讨论)
ATLAS Phase 1 sTGC 探测器 读出电子学
中国科学技术大学计算机系 陈香兰 2013Fall 第七讲 存储器管理 中国科学技术大学计算机系 陈香兰 2013Fall.
刘春秀 (高能所实验物理中心) 中国高能物理大会--南昌
虚 拟 仪 器 virtual instrument
Component 2: Workshop 第二部分研讨会
Inter-band calibration for atmosphere
550工业系列 Dead -Weight Testers活塞压力计
Bulk MicroMegas 和 GEM膜的研制与测试
MDC重建 袁野 张瑶 年粒子物理实验计算软件与技术研讨会威海.
强子物理研究和 GEM膜的研制探索 李笑梅 中国原子能科学研究院 核数据重点实验室
大亚湾实验离线数据处理 何苗 中国科学院高能物理研究所 2017年6月6日 中国科学院成都情报文献中心.
Event Start Time Determination
Principle and application of optical information technology
CEPC SRF System Jiyuan Zhai
緣由 由於積體電路(Integrated Circuit, IC)製造技術的精進,系統設計已由運用個別積體電路功能整合的方式進步至系統晶片(System-on-a-Chip, SoC) 設計的世代。原本分屬不同設計範疇的類比(Analog)積體電路設計與數位(Digital)積體電路設計已經必須同時整合,而進入新的混合訊號(Mixed-Signal)積體電路設計的世代。
On behalf of PandaX-III collaboration Shanghai Jiao Tong university
BESIII MDC 模拟与调试 袁野 年粒子物理实验计算软件与技术研讨会 威海.
CAI-Asia China, CATNet-Asia
Presentation transcript:

BEPCII/BESIII 工程 中国核学会,中国电子学会 核电子学与核探测技术分会年会 中科院高能物理所 2002年12 月2日,厦门 李卫国 中科院高能物理所 2002年12 月2日,厦门

引言 BEPCII 设计 BESIII 设计 进度和经费预算 国际国内合作 结束语

The BES Collaboration Korea (4) Korea University Seoul National University Chonbuk National University Gyeongsang Nat. Univ. USA (4) University of Hawaii University of Texas at Dallas Colorado State University Stanford Linear Accelerator Center UK (1) Queen Mary University China (18) 高能所;中国科学技术大学; 山东大学;浙江大学; 华中师范大学;上海交通大学; 北京大学;高等科学技术中心; 武汉大学;南开大学; 河南师范大学;湖南大学; 清华大学;辽宁大学; 四川大学;江苏师范学院; 广西大学;广西师范大学; Japan (5) Nikow University Tokyo Institute of Technology Miyazaki University KEK U. Tokyo

Data Collected with BESI and BESII

BES 有世界最大的 J/ 和   数据样本 (106) 99.11-01.3 01.11-02.3

BEPCII 未来发展的物理窗口 国际高能物理未来发展有两个前沿: 高能量前沿:寻找Higgs 粒子,探索超越标准模型的新粒子和新现象。 高精度测量前沿:高统计性和小系统误差的测量,检验标准模型,探索超越标准模型的新现象。 考虑到国际高能物理最新成果和B工厂的成功运行,BEPC未来发展的物理窗口主要是粲物理精确测量,并探索新物理现象。BEPC 对该能区物理有独特优势,J/ 和′共振峰截面大,阈值区域本底小,是B工厂无法替代的,对QCD的发展,包括微扰QCD和非微扰QCD及其中间区域十分重要,同时能探索新的物理现象,具有重大物理意义。

BEPC II 的物理目标 精确测量 J/、 、(3770) 衰变 精密测量 CKM 矩阵  强子 衰变 (VP, VT, TP, VS…) 和 辐射衰变 轻强子谱 重子激发态研究 D 介子物理: D 和 Ds 分支比和衰变产物 fD 和 fDs 的测量 检验VDM, NRQCD, PQCD, 研究  疑难

BEPC II 的物理目标 (续)  物理:带电流,测量 m  和 m 强子产生机制,低能 QCD: R 值精确测量  物理:带电流,测量 m  和 m 寻找新粒子: 1P1、c、胶球、夸克胶子混杂态、奇异态… 探索新物理现象: 寻找稀有衰变; 轻子数不守恒现象; J/ 和 衰变中的CP 破坏

BEPC未来发展方案: BEPCII 精确测量需要: 高统计事例 → 高亮度加速器 + 高性能探测器 小系统误差 → 高性能探测器 高统计事例 → 高亮度加速器 + 高性能探测器 小系统误差 → 高性能探测器 要求BEPC主要运行在J/ 和区域,产生的截面非常高 最佳的选择是对加速器和探测器作重大改进(BEPCII / BESIII), 以相对较少的投入在较短的时间内将亮度增加一个数量级以上.

BEPC II 早期设计方案 :单环 多束团 麻花轨道 对撞 在现有的储存环内采用麻花轨道,实现 多束团(2×6) 对撞 束团串(2×6×3) 对撞 与 CESR 类似。设计亮度 为 3×1032cm-2s-1 ,造价估计为4亿元。技术复杂,需要较长的调试时间。

粲物理实验研究出现激烈竞争 BES 的重大物理成果引起国际高能物理界对τ粲物理实验研究的高度重视,成为新热点。 美国CESR 原运行在10GeV的B介子能区,由于无法和B工厂竞争,同时看到τ粲物理实验研究的重大意义,计划安装多个超导wiggler,将能量降到τ– 粲能区。预期亮度为(1.5 – 3)x1032cm-2s-1 。 俄罗斯新西伯利亚的VEPP-4M也有类似的计划。 BEPC/BES正面临激烈的国际竞争。 BEPC II单环方案不能保证BEPC在竞争中的优势地位。

BEPC II 双环方案 在 BEPC 隧道 现有的储存环内新建一个储存环。新老两对半环在南北对撞点交叉,形成两个等同的环。国际先进的双环对撞机技术。 每个环内储存 93个束团,流强 > 0.9A。对撞时间间隔:8 ns. 在南对撞点 实现大交叉角水平对撞(±11 毫弧度). 计算亮度: 1033 cm-2 s-1 @ 3.78GeV. 在北对撞点建立连接外环的同步辐射运行直通束流管道,在南对 撞区的插入铁安装二极线圈,使同步辐射运行继续使用现有的外环,光束线不变。 同步辐射运行:250mA @ 2.5 GeV, 综合性能大幅度提高。 大幅度提高探测器性能:BES III. BEPCII 亮度是 CESR 的3-7倍,而且设计优化在J/ψ和ψ,比CESRc的短平快方案的潜力大得多,技术难度比单环小,能确保我们在竞争中的优势。造价约增加50%。

BEPC 改进: BEPC II — 双环方案

BEPCII的设计目标 增加束流强度,压缩束团尺寸。

双环安装木模研究

技术路线和途径 (LBEPCII/ LBEPC) D.R.=(5.5/1.5) 93  9.8/35=96 双环: 多束团对撞 h~400, kb=1 93 选择适当 ex & 优化参量: Ib=9.8mA, xy=0.04 Micro-b:by* =5cm  1.5 cm 超导聚焦磁铁 减小耦合阻抗 +超导高频腔 sz =5cm  <1.5cm (LBEPCII/ LBEPC) D.R.=(5.5/1.5) 93  9.8/35=96 LBEPC=1.010 31 cm-2s-1  LBEPCII =110 33 cm-2s-1

BEPCII与BEPC、CESRc的比较

关键技术和挑战 注入系统 磁铁系统 电源系统 真空系统 超导插入磁铁和对撞区 束流测量系统 控制系统 注入器改进 500MHz超导高频系统 注入速率: 5 mA/min. 50 mA/min. 研制新正电子源 稳定性和可靠性 Einj= 1.55-1.89 GeV 500MHz超导高频系统 超导高频腔技术 功率源和低电平 低温系统… 注入系统 磁铁系统 电源系统 真空系统 超导插入磁铁和对撞区 束流测量系统 控制系统

注入器-直线加速器的改进 基本要求: 正电子注入速率从5mA/min. 提高到 50 mA/min.; 能量从1.3 GeV 提高到1.55 ~ 1.89 GeV; 采用45MW速调管,改进微波功率源,更换八节加速管; 正电子打靶能量从150 MeV 提高到240 MeV; 电子枪流强从5A提高到10A; 研制高性能正电子源,提高效率; 改进聚焦和轨道校正系统; 重复频率从 12.5 Hz 提高到 50 Hz; 脉冲宽度从2.5ns减小为1ns; 研究 双束团注入的可能性(fRF/fLinac=7/40);

提高正电子流强的措施及其提高因子

超导高频系统 技术路线: 加强与 SSRF, Cornell和KEK 的合作,应用成熟的工业技术,在研制中掌握技术. 基本要求: 足够高的电压  足够高的功率 抑制耦合束团不稳定性  稳定性和可靠性 技术路线: 加强与 SSRF, Cornell和KEK 的合作,应用成熟的工业技术,在研制中掌握技术.

超导高频腔 CESR-type Cavity (ACCEL) KEKB-type Cavity (Mitsubishi ) IHEP/SSRF高频合作组将对超导腔的设计进行优化, 并跟踪腔的制造及其工艺,以便更好地掌握运行和维 护技术。

3.7 对撞区和超导磁铁

BES III 预期年事例数 At  1033,at J/ and 4.14 GeV, ~0.61033  +- J/ Particle Energy Single Ring(1.2fb-1) Double Ring (4fb-1) D0  7.0106 2.3107 D+ 5.0106 1.7107 Ds 4.14GeV 2.0106 4106 +- 3.57GeV 3.67GeV 0.6106 2.9106 0.2107 0.96107 J/   3-4109 6-10109  0.6109 2109

BESIII 探测器的设计目标 适应高计数率:亮度1033cm-2 s-1 和对撞间隔8ns,硬件触发最高事例率为 4000 Hz,经过三级触发後预期最高事例率为 3000 Hz. 改进探测器的分辨率 , 特别是对光子的分辨率 提高粒子鉴别能力 加大几何接收度 改进对撞区,以便安装超导插入磁铁

BESIII 探测器

BESIII 的主要改进内容 CsI晶体量能器: E/E ~ 2.3% 主漂移室(MDC IV ):小单元,铝丝和 He 基气体 P/P (1GeV) = 0.6-0.7 %@0.8T, 0.5 %@1T, dE/dx = 6 % 飞行时间计数器T: 桶部 90 ps;端部 110 ps  计数器(RPC): 读出条宽度: ~4 cm 亮度监测器 (LM) L/ L = 3 % 超导磁铁:1 Tesla, 内径 1.32 m, 长 3.8 m 适应多束团、高亮度的触发和 DAQ 系统 新的电子学读出系统:流水线 计算机系统: PC farm, 机械手带库的数据管理系统

Position resolution 130 m Mom. Resolution 0.5% at 1 GeV at 1 Tesla 主漂移室结构 Small cell, 43layers He based gas HeC3H8 ( 60:40) Position resolution 130 m Mom. Resolution 0.5% at 1 GeV at 1 Tesla 0.6-0.7% at 1 GeV at 0.8 Tesla

drift velocity measurement MDC 模型研究 drift velocity measurement

飞行时间计数器(TOF) 达到设计指标是一个很大的挑战 桶部(Barrel) 端部(Endcap) Double layers TOF: ( or TOF +CCT) Single layer TOF plastic scintillator (BC-404 or BC-408) same 88 pieces per layer in  2 x 48 pieces R: 81 ~ 92 cm, Z: 135 cm Thickness 4 cm, length ~ 240 cm Thick 4 cm, length ~ 45 cm Readout both sides by F-PMT R5924 Readout at one end by F-PMT Time Resolution ~ 90 ps Time Resolution ~ 110 ps Single TOF ~ 100 ps 2σon k/ separation: 1.1~1.5GeV/c (for polar angle 00~ 450) For CCT option, need R&D 达到设计指标是一个很大的挑战

Barrel TOF 时间分辨 Item Time resolution intrinsic for single layer TOF 80ps intrinsic for single layer CCT 100ps Beam length 15mm,35ps Timing uncertainty for multi-bunches ~35ps MDC extrapolation error 5mm, 25ps Uncertainty for electronics 25ps Total for single layer TOF 100ps Total for single layer CCT 120ps Total for Double TOF ~ 90ps

K/ 分辨 TOF+TOF TOF+CCT This is the comparison of K/pi separation for Double TOF or TOF plus CCT. If one layer of TOF time resolution is 100ps and one lyer of CCT time resolution is 120ps, Double TOF’s K/pi separation is to 1.0 GeV. While for the TOF plus CCT detector, the limit is over 1.1GeV.

CsI 电磁量能器(EMC) Rin ~ 93 cm , Lin ~ 276cm cos  = 0.83 BARREL 28cm long ~15 X0, E/E ~2.3 % , X ~ 0.55 cm @ 1GeV Rin ~ 93 cm , Lin ~ 276cm cos  = 0.83 5280 crystals ENDCAP Zin ~ 138 cm 2 x 496 crystals Total ~6000 crystals, covering solid angle cos~ 0.93

Schematic of BESIII CsI EMC

能量分辨率模拟

EMC需采取措施 In order to reach design energy resolution, need careful design of EMC and its calibration system, need to control contributing errors to < 1%: Control and measure temperature, humidity and measure radiation dose. Reduce material and dead space as much as possible. Measure every crystal(+PD): dimension; light output, likely to use cosmic ray. Calibrate the gain of electronics; calibrate the system using Xe light; offline calibration using data (e/).

Option 1 Super-conducting BESIII 磁场 Option 1 Super-conducting B: 1.0 T, L ~ 3.8 m Rin~ 132 cm, Rout ~ 172 cm Technically quite demanding for IHEP both for coil and cryogenic system, now collaborate with KEK in design. Option 2 normal magnet B: 0.8T, Initial invest is smaller, but operating cost (electricity) is higher, And the fake muon rate is higher

Muon 探测器 Barrel (L ~ 4.1m ) + Endcap: cos ~ 0.9 Consist of ~ 9 RPC Rin ~ 175cm; Rout ~ 265cm Iron plate thickness between: 3-8 cm, 8 layers RPC thickness(double layer): ~3.5 cm Readout hits on strips ~4 cm total weight of iron: ~500 tons

RPC 示意图 Disadvantages: High HV(6—10KV),possible sparking; Also big noise due to surface problem; Need R&D。 Material: 1012Ω/cm bakelite; R&D Gas:Ar+F134A(C2H2F4)+Iso-Butane(C4H10), TEST

Muon efficiency and pion contamination as function of mom. Muon acceptance Pion contamination GeV Muon efficiency and pion contamination as function of mom.

对撞区 It is very compact at IR, very close cooperation is needed in the designs of detector and machine components at IR Understand the space sharing, the support, vacuum tight Understand the backgrounds from machine and how to reduce them, good vacuum near detector is required - Beam loss calculation (masks) - Synchrotron radiation (masks) - Heating effect (cooling if necessary) Understand the effects of the fringe field from SCQ to the detector performances, the preliminary study shows that, field uniformity should be better than 5% in most of the MDC volume Center of beam pipe will be a double-wall Be pipe

触发系统 Trigger rate estimation(using the similar trigger conditions) background estimation, with 40 times beam current and half of the beam lifetime, the rough estimation for the background is 80 times the current rate (10-15), or 800-1200 Hz, taking 1500 as a design number Good event rate(at J/psi) At lum.~0.61033 , good event rate, to be 2000 Hz Cosmic ray background can almost be negligible Total peak trigger rate can be 4000 Hz, additional trigger (software) is needed to reduce the event rate to 3000Hz.

Level 0 and 1 are hardware triggers, latency ~6.0s, Pipeline clock 40 M Hz Level 2 is software filtering using online computing farm Because fastest detector element TOF need a time window of about 30 ns, the trigger can identify bunch train only, not individual bunch Level 1 with TOF;hardware track finding; EMC clustering, energy balance, total EMC energy;  counter hits Detector switch Level 1 FEE pipeline Readout buffer Farms Disk Time Reference 0 s 6.0s Ev.Filter PowerPC

前端电子学 Pipeline scheme is required Requirements For the timing measurement, likely using HPTDC 25 ps for TOF, 0.5-1 ns for MDC For charge measurement < 1% accuracy for EMC, 2% for MDC and TOF Total number of electronic channels ~25000

Considering multiple hit time measurement BESIII Electronics specification list Feb. 21, 2002 Item time measurement Charge measurement Count rate per channel Information provided to trigger Number of channel σt INL Range Cross- talk Number of channels σQ Dynamic range Type Quant. MDC 6800 0.5-1 ns ≤0.5% 0-400ns   5fc ≤2% 15 fc - 1800fc 1% 30 k/s hit TOF + CCT 352+ 104 ≤25 ps 0- 60ns 456 12bits(ENOB) 20mv – 4v 2-4 k/s EMC BAR 5280 0.16 fc 200KeV 1 % 0.5fc - 1500fc 0.3 % 1 k/s Summation Of analog (End) 992 0.16fc Mu Chan ~10000 Spec Considering multiple hit time measurement

数据获取系统(DAQ) Event builder ~4000 Hz  ~12 K bytes ~ 50 Mb/s, There is some uncertainty in event size, aim for 2-3 Mb/s/per readout crate Switch network Event filtering Data storage Run control Online event monitor Slow control

Substantial manpower needed for software 离线计算和分析 Computing, network, data storage, data base, processing management Supporting software package, data offline calibration, event reconstruction, event generators, detector simulation Total CPU 36000 MIPS Data storage 500 Tbytes/y on tapes, 24 Tbytes/y on disks Bandwidth for data transfer 100 Mbps Substantial manpower needed for software

Dimensions need final tuning BESIII 机械尺寸图

BESIII 和 BESII 性能比较 子探测器 BES III 性能指标 BESII性能指标 XY (m) = 130 250 主漂移室 P/P (0/0) = 0.5 %(1 GeV) 超导 0.6-0.7 %(1 GeV) 常规 1.7% √2 (1 GeV) dE/dx (0/0) = 6-7 % 8.5% 桶部电磁量能器 E/√E(0/0) = 2.3 %(1 GeV) z(cm) = 0.5cm/√E 20% (1 GeV) 3 cm /√E 飞行时间探测器 T (ps) = 90 ps 桶部 110 ps 端部 180 ps m 子探测器 9 层 3层 磁场 1.0 tesla 方案 1 0.8 tesla 方案 2 0.4 tesla

BESIII 和 CLEOc性能比较 Sub-system BES III CLEOc XY (m) = 130 110-130 MDC P/P (0/0) = 0.5 %(1 GeV) SC 0.6-0.7 %(1 GeV) normal 0.5 %(1 GeV) dE/dx (0/0) = 6-7 % 6% EMC E/√E(0/0) = 2.3 %(1 GeV) z(cm) = 0.5cm/√E 2.3 %(1 GeV) 0.5 cm /√E TOF T (ps) = 90 ps Barrel 110 ps endcap RICH m counter 9 layers 3layers magnet 1.0 tesla option 1 0.8 tesla option 2 1.0 tesla

慢控制系统(slow control) Required measurements from detector and electronics Temperature measurement: > 1000 EMC CsI , 600 ; MDC 16; , 150; electronics crates, 300; cable rack, 100; environment, 100; 2. Humidity measurement: ~250 CsI, 200 ; MDC, 8; electronics, 20; environment, 30; 3. Low HV of VME crates: 500. 4. MDC gas:8. 5. Voltage of power supply: several. 6. Other measurements? Magnetic field; parameters in SC magnet and cryogenics; HV parameters for detectors; radiation dose; He leakage; flammable gas;others.

ONE WIRE BUS can be used to read these signals out Probe/master, doing R&D 64 bit W. A. O(unique code worldwide), 12 bit DATE Temperature probe: DS18B20, 22 RMB/probe humidity probe: LTM8802, ~150 RMB/probe 1. Humidity range: 1~99%,typical precision: 3%. 2. Temperature range: -30℃~60℃,accuracy 0.5 ℃ D . C voltage probe: DS2438/ LTM8805, several dozens of RMB/probe analog voltage:0~10V(resolution:0.01V) Light-decoupling between PC and master to reduce noise pickup, LTM-4850/2 dual-port RS-485 card

BESIII 关键技术和挑战 控制本底 (和加速器),在高亮度下获取高质量的数据 设计和稳定地运行超导磁场 MDC的稳定地运行(>30000 wires), 和高动量分辨 EMC 达到高能量分辨 ,建造中的质量控制和高性能的 刻度系统 TOF 达到高时间分辨,控制各有关因素 DAQ 系统, 达到所需的事例选择和数据传输速率,稳定 可靠地运行;流水线的快电子学 大容量的数据存储和处理

某些设计还需确定,如TOF是否采用CCT,TOF的电子,EMC的支撑结构,特别是采用什么磁场。 离线任务已确定,人员基本落实,总体框架也已选定,需尽快编写投入运行, 约定规则,以便软件人员开始程序的编写。 经费和工期的关键 经费: 量能器;超导磁场;电子学。 工期:主漂移室;量能器;超导磁场(包括轭铁)。

工程的进展 立项报告已由计委委托国际工程咨询公司评审通过, 将上报国务院办公会议审批。 可行性报告已完成。 正进行工程设计,将于年底或明年初完成。 直线的改进已开始。 加速器和探测器的设计经过国际专家评审。 某些关键设备的设计和国外实验室合作, 如超导设备和 低温系统等。

工程进度和经费预算 Very tight schedule  End of 2002 Preliminary Technical Design Report  June 2003 R&D and prototype  May 2004 BEPC run July 2002  June 2006 Construction May 2004  Nov. 2004 BESII dismounting and Linac upgrade Nov. 2004  Jan. 2005 Linac commissioning Jan. 2005  Apr. 2005 SR run Apr. 2005  Jan. 2006 Storage ring assembling Jan. 2006  June 2006 Commissioning of storage ring June 2006  Sep. 2006 BESIII detector moved to beam-line Sep. 2006  Commissioning machine and detector Very tight schedule

BESIII 进度 2001.7~2003.6 R&D of critical parts 2002.7~2005.9 Construction of detector components 2003.1~2004.6 Construction of return yoke 2002.3~2004.12 Design and construct of superconducting magnet 2004.7~2004.11 BESII disassembling 2004.12~2005.3 BESIII iron yoke assembling (with magnet) 2005.4 Commissioning of cryogenics 2005.5~2005.8 Magnet field measurement(with SCQ) 2005.9~2006.1 Assembling of other detector components 2006.2~2006.6 Commissioning of BESIII detector 2006.7~2006.8 BESIII moved to beam-line 2006.9~2006.12 Commissioning of BEPCII+BESIII 某些子系统有可能会推迟

BEPCII /BESIII 国际合作 BNL of US: SC Q magnet; International collaboration played an important roll in BEPC/BES project,Expect to play major roll in the design and construction of BEPCII / BESIII : BNL of US: SC Q magnet; SLAC of US: Key machine technology, design reviews; KEK of Japan: SC cavity and SC solenoid… Improve technical excellency and research capability Advice and help in design and construction in various systems; Technical review and follow-up in detector design, construction and commissioning.

More Institutes from US and Japan may join, Korea has interest in participating Should form BESIII international collaboration according to international standard: Institutional board; Executive board; Spokesperson; etc. International review/Documentation/ video conferencing

BEPCII /BESIII 国内合作 Participation from other Institutes and Universities from China, in charge of one sub-system or collaboration with IHEP Shanghai Synchrotron Light Source 500 MHz RF system Shanghai Institute of Ceramics:CsI crystals Beijing University:RF system, detector Qinghua University:Accelerator technique, detector University of Science and Technology of China:Detector, readout electronics

Design, MC simulation Sub-detectors R&D and construction Electronics R&D and manufacture Online/Offline software Software package Reconstructions Calibration Physics study In charge of some sub-system or send people to IHEP

结束语 BEPC/BES 在-粲物理上有机遇,也有挑战 BEPCII 双环峰值亮度(1.89 GeV) 1033 cm-2s-1 ,同时,对 BES进行重大改造,能保证中国在-粲物理方面保持国际领先水平 。 BEPCII/BESIII 技术上是可行的,设计已基本完成。 BESIII 的设计是国际水平的,很多技术在国内首次实现,是对中国高能物理实验工作者的挑战 要加强国际、国内的合作,发挥全国高能物理学界和相关单位的合作,使工程按性能指标、按时完成。在-粲物理上尽快做出一流的成果。

谢 谢

BESIII 合作组 高能物理所 北京大学 University of Hawaii, Honolulu 山东大学 清华大学 北京大学 四川大学 中国科技大学 University of Hawaii, Honolulu 山东大学 上海硅酸盐所 国立中央大学(台北) University of Tokyo, Tokyo University of Washington, Seattle 华中师范大学

Infrastructure BEPCII needs some building construction: halls for Cryogenic system and additional magnet power supplier; improving shielding of some buildings, etc. Major systems: New cryogenic system: capacity of 1kW/4.5K BEPCII power consumption to be doubled 110kV transformer: 6300kVA  12500kVA New electric crates and apparatus Increase capacity of air-conditioning Improve water circulation system Improve pure water system

Chinese Academy of Sciences: The strategy for Chinese HEP and Advanced Accelerator technology High Energy Physics 1)BEPC future development BEPC II: - BEPC / BES major upgrade, increase luminosity by more than one order of magnitude; - Main physics goal: J/  , ′and D/DS physics; 2)Strength non-accelerator experiments: Cosmic ray, astro-physics experiments, neutrino experiment…; 3) International Collaboration

Science-education Leading Group of State Council, the 7th meeting (2000.7.27), discussed the report by CAS about HEP Conclusions: (1)Approval in principle of 《Report about the future development of Chinese HEP and advanced accelerator technology》by CAS. Meanwhile, CAS should consult further with experts in China and abroad,strength and attract more international collaboration. (2)In view of the success of BEPC, approval of major upgrade of BEPC, with a budget of 400 M RMB. With relatively small invest, continue to obtain high-level achievements. (At that time, it was meant single-ring)

BESIII Mechanical design and Detector Hall Detector on two rail pads to move in south-north Iron Yoke Barrel~ 285 tons; endcap ~252 tons. at both sides between barrel and endcap, there should be a slot of 1100x 80mm for each side of octagon on every terminal surface of the barrel of yoke, for cable space.

Assembled Structure, test assembling at factory

Movable endcap yoke; reposition for field stability endcap EMC supporting and moving design, removing and reconnecting cables should not change the gain.

Arrangements of electronic crates, moving with detector

Arrangements for cooling water, gas, cables