Solar Wind (太陽風) 什麼是太陽風?

Slides:



Advertisements
Similar presentations
2011年度汇报 科技部973项目 《日地空间天气预报的物理基础与模式研究》 第六课题组:空间天气预报方法和技术的应用与集成研究
Advertisements

电离与非电离辐射 华中科技大学同济公卫学院 劳动卫生与环境卫生学系 王正伦 电离与非电离辐射 王正伦.
Suggestion of space weather small/micro satellite series
豬隻體內兒茶素之抗氧化效能與腸道作用研究
太 陽 幾乎佔有全太陽系總質量的98%. 需要109個地球才能填滿整個太陽的圓盤面.
核技术应用与管理 曾志刚.
讲解章节:第一章 卢瑟福模型 第二章 玻尔模型 第三章量子力学导论 第四章电子自旋 第五章多电子原子,泡利原理 第六章,x射线
应急无线电示位标(EPIRB).
第四章 日月地系统.
超新星遗迹和脉冲星成协系统 田文武 2009年7月于北京脉冲星夏校.
血 液 循 环 Blood Circulation.
Key sentences in SC 1. 发明有多种产生方式。 2. 大多数时候,发明的产生源于有人努力地想解决一个难题。
Reading Do you remember what you were doing? 学习目标 1、了解几个重要历史事件。
Unit 4 Astronomy the science of the stars.
Mini-SONG & Site testing at Delingha
广西大学—国家天文台天体物理与空间科学研究中心 China-VO and Astroinformatics
讲座5 目标、范围管理与需求工程.
能發光最美 電激發光高分子材料(PLED) 國立成功大學 化工系 陳 雲 液晶高分子材料、高分子奈米材料、聚氨酯材料
『從原子到宇宙』課程第四週 胡維平 國立中正大學化學暨生物化學系 10/06/2011
D. Halliday, R. Resnick, and J. Walker
Zebra官方網站:
蒸鍍(Evaporation) & 濺鍍(Sputter)
MiniVPN_White (WE101VWT) MiniVPN_Black (BE101VWT)
MiniVPN_White (WE101VWT) MiniVPN_Black (BE101VWT)
Noise & Distortion in Microwave Systems.
附加内容 “AS”用法小结(2).
第 17 章 數位革命與 全球電子市場 © 2005 Prentice Hall.
11 電磁 IV How did the electric guitar revolutionize rock?
转向 EPS (电子助力转向) 马达直接驱动齿条 分相器型 扭矩传感器 转向齿轮单元 无电刷式马达 减速机构 转角传感器 [规格] 驱动形式
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
Digital Terrain Modeling
组合逻辑3 Combinational Logic
我們的太陽 講題大綱: 太陽小檔案 太陽的內部結構 (核心 + 太陽的能源、輻射層、對流層)
Fundamentals of Physics 8/e 29 - Current-Produced Magnetic Field
普通物理 General Physics 29 - Current-Produced Magnetic Field
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
Fundamentals of Physics 8/e 31 - Alternating Fields and Current
Fundamentals of Physics 8/e 28 - Magnetic Force
普通物理 General Physics 22 - Finding the Electric Field-I
辐射带 1958年:探险者一号、探险者三号和苏联的卫星三号等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。 这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。
2012清大電資院學士班 「頂尖企業暑期實習」 經驗分享心得報告 實習企業:工業技術研究院 電光所 實習學生:電資院學士班  呂軒豪.
Neutron Stars and Black Holes 中子星和黑洞
Energy, temperature and hea
Single’s Day.
句子成分的省略(1).
Low Cost Materials for High Energy Sodium-ion Battery
哈勃太空望遠鏡.
Using the relativity principle, Einstein is able to derive that the energy of an object can be written as For v = c, the energy is infinite. Hence you.
普通物理 General Physics 21 - Coulomb's Law
Word Revision. Word Revision 1.灾难 2.洪水 3.经历 4.引起,导致 5.猛烈的,激烈的 6.埋葬 7.发生 8.袭击 旋转的,循环的 飓风 雷暴 龙卷风 柱状物 热带的 墓地 棺材.
脉冲星磁层中波的传播效应 王陈 国家天文台 2009年7月 2009年脉冲星暑期天文学校.
The story about the tiny frogs….
Safety science and engineering department
中国科学技术大学计算机系 陈香兰 2013Fall 第七讲 存储器管理 中国科学技术大学计算机系 陈香兰 2013Fall.
Antarctica 南极洲 Satellite View.
成才之路 · 英语 人教版 · 必修1 路漫漫其修远兮 吾将上下而求索.
高考应试作文写作训练 5. 正反观点对比.
F3A 飞行与评分指南 Flying and Judging F3A A-18 动作图解 徽洋F3A 编译.
Nucleon EM form factors in a quark-gluon core model
磁共振原理的临床应用.
Q1: How do we determine the crystal structure?
虚拟语气(1).
名词从句(4) (复习课).
动词不定式(6).
Short Version : 8. Gravity 短版: 8. 重力
X-ray sources X-rays have the proper wavelength (in the Ångström range, ~10-10 m) to be scattered by the electron cloud of an atom of comparable size (we.
句子成分的省略(3).
Principle and application of optical information technology
Presentation transcript:

Solar Wind (太陽風) 什麼是太陽風? 我們所知的太空其實並非是真空,在地球附近每立方公分約有10個質點,而且是帶電質點。這些帶電質點來自於我們的太陽------ 從日冕 洞吹來的太陽風。太陽風的速率在地球附近每秒約400 公里。 誰提出太陽風的概念? 柏克(Parker)在1958 年提出有名的太陽風理論。太陽隨時有高速的電漿放出而充滿於行星際空間,也就是所謂的太陽風。柏克並算出,如果太陽附近的日冕溫度若是一百萬度時,則在距離太陽1AU 的地球附近地區,太陽風的速率是500 公里/ 秒及密度是每立方公分有七個質子或電子。1962 年,美國的水手二號太空船,證實了柏克的理論是正確的。

Solar Wind (太陽風) 太陽風中不但有電漿,而且太陽表面的磁埸亦為其所帶出,即所謂的 行星際空間磁埸(IMF)。太陽在旋轉,在赤道附近自轉一周約為地球的 25 天,而兩極則是35 天左右。在太陽表面不同部份會放射出不同速度 的太陽風。當太陽風吹出時,磁場會被太陽風拉著跑,由於太陽的自 轉,太陽磁場會以螺旋結構分佈於太陽系當中,此一太陽磁場又會與 太陽系行星的磁場相互影響而造成多個行星附近之太空天氣變化。

太陽對地球太空天氣的影響 太陽的爆發是所有太空天氣現象的主要來源, 太陽風夾帶著這些效應到地球時,會與地球 磁場作用而影響磁層與電離層,同時引發的 磁層與電離層之電漿耦合作用也很重要。整 個作用鏈從太陽直到地球觀測到的磁暴,這 包含著相當複雜的過程,而星際宇宙射線 (galactic cosmic rays)也被視為傷害的次要來源。

太空天氣對地球太空環境各層面的影響 ... disrupted by solar and geomagnetic events Satellite operations (衛星操作) Space Shuttle and Space Station activities (太空任務) High-altitude polar flights (高緯極地飛航) Railway (鐵路交通) Navigation (航海) HF radio communications (高頻通信) Mobile phone communications (行動電話通信) Electric power distributions (電力配送) Pipeline operations (油氣輸送) Long Term Climate Variations (長期氣候變動) cardiovascular disease incidence (心血管疾病發病率)

(Adapted from : Joe H. Allen, SCOSTEP, GOMAC 2002) Joe Allen: Phantom Command (PC) is the descriptive name given to the type of anomaly in which a satellite instrument “turns on” when it should be “off”, or the reverse, as if a command was received out of the planned sequence from some phantom ground controller. Such anomalies may be only a nuisance to satellite operators, or they may impair the operation of systems vital to satellite function. They are often seen clustered in sectors of a GEO satellite orbit, such as the “midnight-to-dawn” region (see following slides). Also, they are often clustered bi-modally by season, with the peak happening in the days before and after each equinox. One aerospace engineer reported a GEO satellite that had its anomalies clustered in the hours neares the dawn and dusk meridian passage. However, they were also clustered by season. It turned out that the satellite had significant thermal electron emission from the large sunlit surface of a continually Earth-pointing main antenna. When the satellite was near dawn and dusk, the antenna was self-shadowing and created a condition in which differential surface charging could occur in the presence of lower energy surplus electrons. The distribution of geomagnetic storms as monitored by the Kp or Ap index shows similar equinoctial peaks to those of the PC satellite anomalies, and represent times when surplus electrons are present. 太空天氣對衛星運作可能造成的影響 False Operations (錯誤動作) : PHANTOM COMMAND PROTON EVENTS (質子事件) Power Panel Output Loss (能源板輸出消失) Charge Deposition(電荷沉降) : SINGLE EVENT UPSETS Arc Discharges(弧狀放電) : Bulk Charging (Deep Dielectric) ION EFFECTS on OPTICAL SENSORS(光學元件受損) Tumbling(衛星翻滾) Pointing Problems(指向問題) : Magnetopause Crossing Events Geomagnetic Storms & Substorms (地磁活動造成的拖曳) : Drag (Adapted from : Joe H. Allen, SCOSTEP, GOMAC 2002)

衛星運作異常次數的變化趨勢(恰與太陽活動周期趨勢相符)

造成衛星運作被破壞的原因 Electromagnetic Radiation (電磁輻射) Joe Allen: In order for activity observed on/at the Sun to cause problems for a satellite in interplanetary space, or orbiting Earth inside the magnetosphere, and for technology and humans on Earth or in space, some physical wave or object must reach them from the Sun. These may include: Electromagnetic radiation – light, X-rays, and other wavelengths emitted by the Sun. Energetic particles, especially protons, alphas, and heavier ions from CMEs that expand outward from the Sun in a cloud that eventually may engulf the magnetosphere (or may only slightly graze it or miss it altogether). Successive streams may join together and can form a shock wave that scoops up other plasma in its course. Geomagnetic storms are disturbances at Earth in the otherwise regular daily variations of the geomagnetic field measured by a worldwide array of ground-based magnetic observatories. Such storms arise when a large cloud of electrons penetrate the magnetosphere. They are carried tailward by the broken geomagnetic field lines that merged with the IMS. In the tail, they are injected toward Earth around the midnight meridian in a mass near the equatorial plane. Depending on the sign of their electrical charge, the injected particles are deflected by the geomagnetic field and form a circle of moving charge around Earth (the “ring current”). The dynamic interaction of moving energetic particles and geomagnetic field and induced potentials causes field-aligned currents to flow spiraling down from the equatorial zone at geostationary altitude along field lines to the polar regions where the incoming particles may collide with atmospheric atoms (mainly Oxygen and Nitrogen) and produce the visible aurora, or may rebound for another circuit. Counterpart streams of protons and heavier ions flow in opposite directions from the electrons because of their positive charge. At an altitude of some 100 km, the field-aligned electrons move in E-W flow patterns in the auroral zone, forming the “auroral electrojets”. Polar region magnetic observatories on Earth’s surface record large excursions, especially in H, that vary in amplitude and direction depending on where the station is relative to the overhead current system. These are high latitude disturbances are Auroral Substorms. The equatorial ring current produces a global depression in the H-component of the geomagnetic field. The amplitude of these changes in the geomagnetic field is described and quantified by a variety of magnetic activity indices. Killer Electrons of energy > 2 MeV are recorded by GOES SEM sensors and other geostationary monitoring satellites usually after a the first 24 hours of a recurrent geomagnetic storm. Such increases at GEO altitude may be of two to five orders of magnitude. They can persist for days to weeks, sometimes interrupted for about 24-hours by another low-level magnetic storm. Exposure to these persistent high levels of energetic electrons is associated with satellite bulk charging and consequent arcing which can damage vital satellite elements. 造成衛星運作被破壞的原因 Electromagnetic Radiation (電磁輻射) Flare X-rays and UV affect ionosphere/communications. Energetic particles (ions) (高能粒子) form shock wave, move magnetosphere inside GEO, enhance radiation belts, and cause geomagnetic storms & substorms. Geomagnetic storm (地磁暴) disturbed fields & current systems, surface charging. Auroral Substorm (極光副暴) current systems and fields affect satellites directly. Killer Electrons (殺手電子) increase at GEO after low level magnetic storm, last for weeks.

太空飛行 (Space Flight) 太空天氣會影響太空飛行的每個階段,可能因太陽X射線暴(solar X-ray burst)引起的通訊困難而延期,增強的輻射可能傷及太空人而無法太空漫步,未來有人的行星際飛行也需考量配合較低星際宇宙射線(cosmic rays)劑量的時期,以及太陽高能粒子的屏蔽。太空飛船所面臨的危機來源有:熱電漿電子產生的表面充電(surface charging)、高能電子穿透飛船干擾或破壞電子儀器、長時間紫外線造成設備如太陽電池的老化,以及過強紫外線使大氣層向上升展造成衛星在軌道運行的阻力,衛星高度陡降會衛星失去聯絡。

航空 (Aviation) 對於飛機駕駛、乘客與機上儀器有威脅的輻射線源為二次宇宙射線(secondary cosmic rays),飛行路線與高度會關係著影響的程度。因宇宙射線在地磁極區穿透得較深入大氣層,高緯地區的路線有較高的曝曬量,因此科學家正研究該輻射劑量對飛航的影響,歐洲已有飛航的輻射防護法條實施。現代飛機上的微晶片極易受輻射損壞,研究(Ziegler and Srinivasan, 1996)指出飛行高度自9km提高至20km時,儀器上的CMOS的軟錯誤率(soft error rate)將增加一倍。

鐵路交通 (Railways) 太空天氣風暴時鐵道設備會因地電場而驅動地磁感應電流(Geomagnetically Induced Currents, GIC),目前對於GIC產生的電壓大小與影響的相關認知甚少,唯一明確的事件紀錄是1982年7月的磁暴期間,瑞典發生過鐵道號誌自行變成紅燈,但實際並無火車通過,其原因尚不明,但有理由相信一些鐵路設施的誤動作可能與太空天氣有關。

航海 (Navigation) 遠洋船舶之間的通信與定位,主要仍依賴穿透或利用電離層反射的通訊系統,此種系統深受太空天氣的影響,電離層特性的改變將導致地面與衛星之間通訊信號衰減或失真,例如全球定位系統(GPS)會因電離層總電子濃度影響其信號傳輸。 低層電離層增加的粒子會吸收在相對高頻處(HF範圍)的短波無線電,造成無線電通訊完全失靈。平常在低處(D、E層)電離層反射出的較低頻率波在此刻會在比平時更低高度反射,而改變傳播途徑。由於此現象會依據太陽所產生的地磁擾動大小和位置而持續數日,因此對無線電通訊的影響格外嚴重。

高頻通信 (HF radio communication) 最早發現太空天氣影響電信系統的是150多年前的電報員(Boteler et al.,1998),當時出現電報機無法操作,有時則不需電池也能操作,因地磁場在通信電纜感應了GIC。1940年3月的大磁暴曾經中斷了北挪威的通訊系統,這次感應的電場強度估計高達45~55V/km,而一般太空天氣引發的電場強度約1~10V/km,因此國際電話的海底電纜可能會感應出上百或上千伏特的電壓。雖然現代的光纜不至於有GIC的問題,但信號放大器仍可能因連接金屬饋線而受GIC影響。

通信頻率分布圖(頻率由左而右遞增)

太陽無線電波暴與手機行動通信 (Solar Radio Bursts and mobile phone communications) 太陽無線電波暴(solar radio burst)的雜訊會影響通訊,1996年某日美國的行動通信系統電話中斷率因太陽閃焰(solar flare)無線電波輻射由2%增為9%(Lanzerotti et al., 1999)。 Call-blocking bursts can happen as often as once every 3.5 days during solar maximum. This decreases to once in 18.5 days during solar minimum. Consequently, when solar activity is at its maximum, an average base station could be temporarily knocked out several times per year. (Balachandran Bala, Louis J. Lanzerotti, Dale E. Gary, David J. Thompson, "Noise in Wireless Systems Produced by Solar Radio Bursts," Radio Science, Volume. 37, number 2, 2002).

電力系統 (Power Grid Systems) 地電場會在電力傳輸網路感應GIC,因GIC是準直流,易造成變壓器飽和。最有名的GIC突發性災難發生於1989年3月加拿大魁北克,該省經歷了數小時的大停電,紐澤西州的一個變電系統也於相同的磁暴中永久損壞。 由於GIC主要在高緯地區造成問題,北美與北歐國家相當關切這方面的研究,但其實GIC也會影響較低緯地區,因為GIC的強度大小取決於系統的結構,亦即傳輸線的阻抗、長度與變壓器的位置,還有一些未知的因素。

石油與瓦斯輸送管 (Oil and Gas Pipelines) 地下輸送管若無正確防護容易腐蝕損壞,腐蝕最嚴重的部位在於管路插入周圍土壤之處,在那兒電化學條件會引起腐蝕作用,通常使用高阻抗鍍膜與陰極防鏽系統保護管線,但地磁暴發生時的感應電壓可輕易地超出陰極防鏽電位。位於芬蘭南部的天然氣輸送管未曾因太空天氣而出過問題,即使沿著管線的GIC高達數百安培,因為只要保護鍍膜未破裂,導通電流密度每平方米僅數毫安培。

長期氣候變動 (Long Term Climate Variations) 太陽電磁輻射量的變化 太陽電漿與磁場的變動 受控於太陽的宇宙射線量之變化 Adapted form "Solar Activity and Earth's Climate", at Lund Space Weather Center

心血管疾病發病率 (cardiovascular disease incidence) 長期的心臟疾病與腦中風發病率與太空天氣變化的相關性研究指出,在地磁劇烈擾動期間出現較高的發病率,在地磁寧靜期間則有較平常更低的發病率,其他研究也顯示腫瘤之類的病例也與太陽黑子數週期有正相關,這都顯示太空天氣可能影響人體的健康狀態,但這方面仍需更多與更仔細的研究,才能了解其影響性之大小與引發人體反應的機制。 胡漢明、李永生、張文元,太陽活動對腫瘤和循環系統疾病的影響,雲南天文台台刊,No.1, p.35~40, 2000. 曾治權等,北京地區冠心病和腦猝中發病與太陽、地磁活動關係的探討,地理研究,Vol.14, No.3, p.88~95, 1995.

太空天氣保險 (Insurance) The market is composed of roughly 12 leading insurers (i.e. insurers  able to study a risk and provide a quotation for it) worldwide, and  roughly 30 "followers" (insurers that will provide capacity behind a leader). 

對於太空環境的影響,除了太空天氣因素以外,也有部分來自人為因素所造成,如衛星殘骸所形成的太空垃圾。以下兩圖為太空垃圾在地球上空的分布情形。

太空垃圾(Space Garbage, Space Junk)

太空垃圾(Space Garbage, Space Junk)