Manifold Learning Kai Yang sadoii@163.com 1.12.2015.

Slides:



Advertisements
Similar presentations
2016年9月8日 2016年9月8日 2016年9月8日 1 Semi-supervised Learning by Sparse Representation Shuicheng Yan Huan Wang Lecturer: Yitao Zhai.
Advertisements

海洋教育:教科書、教師與教學 第七至十章導讀 宏仁國中 林珮瑜
对应用型本科建设中若干问题的认识 张家钰
流形学习.
2007年8月龙星课程 周源源老师课程体会 包云岗 中科院计算所
Unsupervised feature learning: autoencoders
Chapter 5 research Methods in Social Medicine
師資培育中心外埠教育參觀.
創意產業的品牌溝通策略實務分享 主講人-王福闓 丁英隆、楊朝皓 101學年度「科技藝術專題講座」心得報告.
CATIA V5 Training CATIA V5 装配设计 Assembly Design.
資料探勘(Data Mining)及其應用之介紹
Research Question-Methodology
學習共同體實施心得分享 新泰國中 報告者 張國振校長.
How can we be a member of the Society? You should finish the following tasks if you want to be a member of the Birdwatching Society.
An Ultra-Wearable, Wireless, Low Power ECG Monitoring System
XI. Hilbert Huang Transform (HHT)
libD3C: 一种免参数的、支持不平衡分类的二类分类器
深層學習 暑期訓練 (2017).
-Artificial Neural Network- Adaline & Madaline
THE JOURNAL OF CHINA UNIVERSITIES OF POSTS AND TELECOMMUNICATIONS
Some Effective Techniques for Naive Bayes Text Classification
Rate and Distortion Optimization for Reversible Data Hiding Using Multiple Histogram Shifting Source: IEEE Transactions On Cybernetics, Vol. 47, No. 2,February.
Thinking of Instrumentation Survivability Under Severe Accident
全球經濟與地理變遷 王文誠 Wen-Cheng Wang, PhD 國立臺灣師範大學 地理學系
Microsoft PowerPoint Microsoft Producer 2003
The Empirical Study on the Correlation between Equity Incentive and Enterprise Performance for Listed Companies 上市公司股权激励与企业绩效相关性的实证研究 汇报人:白欣蓉 学 号:
Seam Carving for Content-Aware Image Resizing
Fundamentals of Physics 8/e 27 - Circuit Theory
Department of Computer Science & Information Engineering
射影幾何於攝影測量上之應用 Projective Geometry in Photogrammetry
5.3 USE OF PREVIOUS RESEARCH
Network Planning Algorithms in CATV Networks
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
信息产业导论期末汇报 汇报人:刁梦鸽 学号: 时间:2012年5月31日.
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
VISP+MS 国际高校访问学生 及统计理学硕士项目
Chapter 9 (三维几何变换) To Discuss The Methods for Performing Geometric Transformations.
先生们,大家好! 尊敬的各位先生,下午好! 西安交通大学理学院 科学计算系 褚蕾蕾
A high payload data hiding scheme based on modified AMBTC technique
Advanced Digital Signal Processing 高等數位訊號處理
谈模式识别方法在林业管理问题中的应用 报告人:管理工程系 马宁 报告地点:学研B107
模式识别与智能系统研究中心介绍 2017年8月.
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
Total Review of Data Structures
Build an app to measure ECG-base HRV via a Smart wristband
表情识别研究 Sources of facial expressions
清華大學 青少年科技文化夏令營 迎生聚會 2006年7月7日 香港教育工作者聯會會所.
Learn Question Focus and Dependency Relations from Web Search Results for Question Classification 各位老師大家好,這是我今天要報告的論文題目,…… 那在題目上的括號是因為,前陣子我們有投airs的paper,那有reviewer對model的名稱產生意見.
Representation Learning of Knowledge Graphs with Hierarchical Types
中国科学院自动化研究所 流形学习问题 杨 剑 中国科学院自动化研究所 2004年12月29日.
高考应试作文写作训练 5. 正反观点对比.
LSVT Voice Rehabilitation
PBL的核心目標與實例分享 國立台南大學 蔣佳玲.
Topology David Shiuan Department of Life Science
Nucleon EM form factors in a quark-gluon core model
(二)盲信号分离.
An Quick Introduction to R and its Application for Bioinformatics
钱炘祺 一种面向实体浏览中属性融合的人机交互的设计与实现 Designing Human-Computer Interaction of Property Consolidation for Entity Browsing 钱炘祺
專題題目(標楷體96大小字型) 專題學生:(標楷體72大小字型) 指導教授:(標楷體72大小字型)
Resources Planning for Applied Research
Fast Image Dehazing Algorithm using Morphological Reconstruction
Income Inequality I 連賢明.
Class imbalance in Classification
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
My favorite subject science.
Principle and application of optical information technology
之前都是分类的蒸馏很简单。然后从分类到分割也是一样,下一篇是检测的蒸馏
Voronoi Diagram and Delaunay Triangulation
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

Manifold Learning Kai Yang sadoii@163.com 1.12.2015

Machine Learning Problem (Training Data) f C罗 1.欧式空间 2.我们是否还需要去关注,当数据不处于欧式空间的时候,如何解决? We always think X and Y are in Euclidean space f:X→Y Manifold learning

Outline What’s manifold and manifold learning? What’s classical methods and its application? Summary and thought. Manifold learning

What’s manifold and manifold learning? Background Motivation Manifold learning

Background Manifold Manifold = Many + Fold 流形学习——北大数学系江泽涵教授 2.流形是一个空间,而不是一个形状——流形空间。 3.形象表示流形,不从数学上说明。 Manifold learning

Background Manifold learning Dimensionality reduction The geometry and topology of data manifold Study on machine learning problem under manifold assumption Dimensionality reduction Manifold learning

Motivation Data:Euclidean space Traditional dimensionality reduction Principal Component Analysis(PCA) Linear Discriminant Analysis(LDA) PCA 降维的意义: 1.原始采样空间冗余信息过多 2.数据可视化,特征提取 Data:Euclidean space LDA Manifold learning

Motivation Traditional method in manifold PCA Not Work! Manifold learning

Manifold learning Manifold Dimensionality Reduction It’s an dimensionality reduction method based on manifold space Manifold Dimensionality Reduction Manifold learning

Manifold learning Low-dimensional embedding / coordinate space dimensionality reduction Maintain a certain geometric properties (principle) High-dimensional data / observation space Low-dimensional embedding / coordinate space [王瑞平,流形学习专题介绍] Manifold learning

Outline What’s classical methods and its application? 等距离映射 局部线性嵌入 (Isometric MaPPing,ISOMAP) 局部线性嵌入 (Locally Linear Embedding,LLE) Manifold learning

The manifold ways of perception[H. Sebastian Seung, Daniel D The manifold ways of perception[H. Sebastian Seung, Daniel D. Lee,2000,science] 这篇文章的重要在于,告诉人们所认知的世界,是流形的。 而机器学习是让机器模拟人的行为,因此让机器去研究流形的流形学习就有了现实意义。 Professor of Computer Science and the Princeton Neuroscience Institute Professor in School of Engineering and Applied Science at the University of Pennsylvania Manifold learning

Isometric Feature Mapping J.B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, vol. 290, pp. 2319--2323, 2000. Cited Views: 7424 Manifold learning

Isometric Feature Mapping geodesic distance Embedding space of dimensionality reduction Euclidean distance vs. geodesic distance Shortest path approximate geodesic distance 我们研究的是流形空间,而非欧式空间。那么我们需要找到一种,在流形空间中表示距离的量。 欧式空间的距离,两个点的坐标差。那么在流形空间,应该如何鉴定两个点的距离呢?——测底距离。 测底距离:1.形成紧邻图。2.相邻点用欧氏距离表示测底距离,不相邻点用最短路径表示测底距离。 Manifold learning

Isometric Feature Mapping The basic idea After the reduction, the distance between any two points in low-dimensional space should be same with distance in the original high-dimensional space xi xj gij yi yj dij Mapping gij dij Manifold learning

Isometric Feature Mapping 证明在欧式空间相似性较小,但流形空间相似性大的数据,降维之后仍能保持原有的相似性。 16 Manifold learning

Locally linear Embedding Cited Views: 7660 Locally linear Embedding S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, vol. 290, pp. 2323--2326, 2000. Cited Views: 7660 Manifold learning

Locally linear Embedding The basic idea Sampling data with low-dimensional manifold is linear approximately a Euclidean space locally Data samples on manifold Manifold learning

Locally linear Embedding Manifold learning

Locally linear Embedding Manifold learning

Application Data visualization Information retrieval Image process Pattern recognition …… Manifold learning

Outline Summary and Thoughts. Compare ISOMAP and LLE Conclusion Resources and Reference Manifold learning

ISOMAP vs LLE Similar They all can keep the geometrical properties of manifold for the same purpose. Manifold learning

ISOMAP vs LLE Different Isomap wants to maintain the geodesic distance between any two points while LLE hope to maintain local linear relationship 从保持几何的角度来看,Isomap保持了更多的信息量 LLE算法希望样本集均匀稠密采样于低维流形,因此,对于受噪声污染、样本密度稀疏或相互关联较弱的数据集,在从高维观测 空间到低维嵌入空间的映射过程中,可能会将相互关联较弱的远点映射到局部近邻点的位置,从而破坏了低维嵌入结果。 Manifold learning

ISOMAP vs LLE Different Isomap:global LLE:local Too Hard Better 从复杂度角度来看 Isomap:考虑任意两点之间的关系,这个数量将随着数据点数量的增多而爆炸性增长,从而使得计算难以负荷。 以 LLE 为开端的局部分 析方法的变种和相关的理论基 础研究逐渐受到更多的关注。 Too Hard Better Isomap:global LLE:local Manifold learning

Conclusion Advantage Disadvantages Based on the geometry structure of the manifold, can keep the original information Disadvantages The assumption of manifold structure Neighborhood parameter k 非线性:基于流形内在几何结构,体现现实数据的本质 对观察数据存在流形结构的假设 需要调节较多的算法参数,如k-NN的邻域参数k Manifold learning

Resources Isomap LLE Mani fold Learning Matlab Demo http://isomap.stanford.edu/ LLE http://www.cs.nyu.edu/~roweis/lle/publications.html Mani fold Learning Matlab Demo http://www.math.ucla.edu/~wittman/mani/index.html Comparison of Manifold Learning methods http://scikit-learn.org/stable/auto_examples/ manifold/plot_compare_methods.html http://people.cs.uchicago.edu/~xiaofei/ Manifold learning

Reference Xiaofei He :manifold learning http://www.cad.zju.edu.cn/reports/%C1%F7%D0%CE%D1%A7%CF%B0.pdf Homepage: http://people.cs.uchicago.edu/~xiaofei/ Joshua B. Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction Sam T. Roweis and Lawrence K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding Chunguang LI. Manifold Learning and its Application in Pattern Recognition Yingke Lei. The study of Manifold Learning Algorithms and Their Applications Ruiping Wang. Manifold Learning presentations http://blog.csdn.net/xywlpo/article/details/6450632 http://blog.sciencenet.cn/blog-722391-583413.html Manifold learning

Question and Answer? 2011年11月1日

Thanks! Manifold learning