Chapter 4 Optical Receivers

Slides:



Advertisements
Similar presentations
Pulsar Workshop , NAOC1. Timing irregularities Timing noise: random fluctuation in pulse frequency with δν/ν < Glitch: pulse frequency.
Advertisements

663 Chapter 14 Integral Transform Method Integral transform 可以表示成如下的積分式的 transform  kernel Laplace transform is one of the integral transform 本章討論的 integral.
Course 1 演算法: 效率、分析與量級 Algorithms: Efficiency, Analysis, and Order
--- Chapter 10 Convection ---
2014学年第一学期 徐汇区高中物理工作安排 3/19/2017 7:13 AM
四. 光探测器.
本章目錄 10-1 理想運算放大器簡介 10-2 運算放大器之特性及參數 10-3 虛接地 10-4 反相放大器 10-5 反相器.
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
Audio.
版權所有 翻印必究 指導教授:林克默 博士 報告學生:許博淳 報告日期: 2011/10/24. 版權所有 翻印必究 Results and discussion The crystalline peak at 33° corresponds to the diffraction of the (200)
AN INTRODUCTION TO OFDM
Chapter 6 金氧半場效電晶體及相關元件
Platypus — Indoor Localization and Identification through Sensing Electric Potential Changes in Human Bodies.
量子物理概論, 固態能帶概念, 物質導電度, 半導體材料
Population proportion and sample proportion
D. Halliday, R. Resnick, and J. Walker
Acoustic规范和测试 Base Band 瞿雪丽 2002/1/30.
Fiber-Optic Communication Technology
氮化銦鎵藍光發光二極體效率衰退之抑制 Reduction of efficiency droop in Blue InGaN LEDs
ITO薄膜晶体管辅助层的文献调研 姓名:刘洋 学号: 研究小组:TFT一组 薄膜晶体管与先进显示技术实验室
Purposes of Mold Cooling Design
VAC电流传感器用于工业电源 VAC Current Sensors for Industrial Applications
第5章 光电检测器和光接收机 本章内容 5.1 光检测器 5.2 光电检测器的工作特性 5.3 光接收机 5.4 光接收机的噪声
Noise & Distortion in Microwave Systems.
§5.6 Hole-Burning and The Lamb Dip in Doppler- Broadened Gas Laser
Sampling Theory and Some Important Sampling Distributions
转向 EPS (电子助力转向) 马达直接驱动齿条 分相器型 扭矩传感器 转向齿轮单元 无电刷式马达 减速机构 转角传感器 [规格] 驱动形式
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
EVS-05-27e Action items7 China will provide language for low battery energy warning by next EVS IG meeting.
开关电源常规测试项目 目录 1、功率因素和效率测试 2、平均效率测试 3、输入电流测试 4、浪涌电流测试 5、电压调整率测试
Introduction to IMPATT Diodes
100G技术与光传送网新技术 张成良 中国电信集团公司
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
光检测器的工作原理 光检测器的特性参数 光 接 收 机 光收发合一模块 光纤通信技术的回顾和展望
光纤通信第七章 Light Detector 光检测器.
普通物理 General Physics 26 - Ohm's Law
组合逻辑3 Combinational Logic
HOM damping methods for CEPC
聲轉電信號.
排氣 Vent 為何排氣仍然還是一個問題? Why venting is still a problem ?
普通物理 General Physics 31 - Alternating Fields and Current
Fundamentals of Physics 8/e 31 - Alternating Fields and Current
JTAG INTERFACE SRAM TESTER WITH C-LCM
变频器和滤波器 分类和应用.
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
Fundamentals of Physics 8/e 28 - Magnetic Force
第二章 實體層 2-1 傳輸媒介的種類 2-2 數據傳輸的相關技術 2-3 數位資料與數位訊號 2-4 數位資料與類比訊號
Chapter 8 Thermodynamics of High-Speed Gas Flow (第8章 气体和蒸气的流动)
辐射带 1958年:探险者一号、探险者三号和苏联的卫星三号等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。 这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。
2012清大電資院學士班 「頂尖企業暑期實習」 經驗分享心得報告 實習企業:工業技術研究院 電光所 實習學生:電資院學士班  呂軒豪.
Summary Chapter 2 1. Solution for H-like atom/ion (one-electron system) radial & angular functions of Atomic orbitals, electron cloud, quantum numbers.
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
ATLAS Phase 1 sTGC 探测器 读出电子学
Fundamentals of Physics 8/e 26 - Ohm's Law
準確性(Accuracy) 誤差種類 儀器準確度 時間因素 儀器參數.
中国科学技术大学计算机系 陈香兰 2013Fall 第七讲 存储器管理 中国科学技术大学计算机系 陈香兰 2013Fall.
通信工程专业英语 Lesson 13 Phase-Locked Loops 第13课 锁相环
使用ALD在一般HEMT結構上沉積氧化鋁Al2O3當成閘汲絕緣層形成MOSHEMT
WEBee: Physical-Layer Cross-Technology Communication via Emulation
Q & A.
XenICs近红外InGaAs相机的性能测试
96學年度第二學期電機系教學助理課後輔導進度表(三)(查堂重點)
动词不定式(6).
96學年度第二學期電機系教學助理課後輔導進度表(一)(查堂重點)
Chapter 5 Data Acquisition Circuits Prof. Dehan Luo
Principle and application of optical information technology
Chapter 7. The Space Segment
Gaussian Process Ruohua Shi Meeting
FREE SPACE MATRIX IN NG-PON2 Low Loss Solution In Component Level.
Presentation transcript:

Chapter 4 Optical Receivers Configuration Requirements high sensitivity fast response low noise low cost & high reliability optical signal voltage supply O/E pre-amplifier automatic gain control amplifier filter decision circuit clock recovery PIN or APD data Front End Linear Channel Data Recovery 2018/11/12 OE of HUST

Chapter 4 Optical Receivers Basic Concept Common Photodetectors Receiver Design Receiver Noise Receiver Sensitivity Sensitivity Degradation 2018/11/12 OE of HUST

4.1 Basic Concepts 4.1.1 Detector Responsivity Stimulated absorption: photon an electron-hole pair Photon current: , R: responsivity Quantum efficiency: 2018/11/12 OE of HUST

2018/11/12 OE of HUST

2018/11/12 OE of HUST

4.1.2 Rise time and Bandwidth Pin Vout(t) 90% 10% V0 Tr input voltage: 0~V0 output voltage: rise time: Tr For photodiode: τRC: time constant of the RC circuit, τtr: transit time of carriers Vd: drift velocity 2018/11/12 OE of HUST

Bandwidth of a photodiode Trade-off between Dark current Caused by stray light or thermally generated electron-hole pairs 2018/11/12 OE of HUST

Chapter 4 Optical Receivers Basic Concept Common Photodetectors Receiver Design Receiver Noise Receiver Sensitivity Sensitivity Degradation 2018/11/12 OE of HUST

4.2 Common photodetectors 4.2.1 p-n photodiodes a reverse biased p-n junction 2018/11/12 OE of HUST

the presence of a diffusive component distorts the temporal response of a photodiode. solution: decreasing the widths of the p- and n- regions; increasing the depletion-region width. 2018/11/12 OE of HUST

4.2.2 p-i-n photodiodes 2018/11/12 OE of HUST

Double-heterostructure design i-layer → high resistance → large electric field → the depletion region throughout it → drift component dominates over the diffusion component → Double-heterostructure design p-InP n-InP InGaAs absorption can only occur in the middle of i-layer diffusive component is eliminated completely 2018/11/12 OE of HUST

4.2.3 Avalanche Photodiodes Basic concepts 2018/11/12 OE of HUST

a photon a single primary electron many secondary electrons & holes Impact ionization: an accelerating electron can acquire sufficient energy to generate a new electron-hole pair. a photon a single primary electron many secondary electrons & holes i-layer: absorption p-layer: multiplication through impact ionization impact-ionization coefficients: ( : electrons; : holes ) depend on material and on the electric field. 2018/11/12 OE of HUST

2018/11/12 OE of HUST

ie, ih: electron & hole current respectively Multiplication factor the current flow within multiplication layer ie, ih: electron & hole current respectively the total current: 2018/11/12 OE of HUST

where is ionization coefficient ratio assuming that: , the electric field across the gain region is uniform ( are constants), only electrons cross the boundary to enter the n-region. boundary condition: where is ionization coefficient ratio 2018/11/12 OE of HUST

Avalanche process: intrinsically noisy, gain factor fluctuates around an average value. Responsivity avalanche breakdown! when M: average APD gain 2018/11/12 OE of HUST

the effective transit time Bandwidth the low frequency gain the effective transit time 2018/11/12 OE of HUST

2018/11/12 OE of HUST

SAM-APD (Separate Absorption & Multiplication) APD structures Reach-through APD SAM-APD (Separate Absorption & Multiplication) Absorption & Multiplication materials is the same bandgap. 1) 0.85um: Si, KA<<1 2) 1.31um, 1.55um: Ge, InGaAs p+-InP n+-InP n-InP i-InGaAs M A - + 2018/11/12 OE of HUST

large bandgap → can be applied high reverse voltage InP: large bandgap → can be applied high reverse voltage 2018/11/12 OE of HUST

Problem: large bandgap difference between InP & InGaAs Eg-Inp=1.35eV Eg-InGaAs=0.75eV 1) holes generated are trapped at the heterojunction 2) slow response & small bandwidth Solution: 2018/11/12 OE of HUST

SAGM-APD (Separate Absorption Grading & Multiplication) p+-InP n+-InP n-InP InGaAs M A - + InGaAsP G 2018/11/12 OE of HUST

SAGCM-APD (C-charge layer) p+-InP N+-InP n-InP InGaAs M A - + InGaAsP G C 2018/11/12 OE of HUST

Chapter 4 Optical Receivers Basic Concept Common Photodetectors Receiver Design Receiver Noise Receiver Sensitivity Sensitivity Degradation 2018/11/12 OE of HUST

4.3.1 光接收机的前端 光接收机前端由光电二极管和前置放大器两部份组成,其作用是将光纤线路末端的光比特流转换为时变电流信号,然后进行预放大,以便后级电路作进一步处理。 2018/11/12 OE of HUST

(a)高(低)阻抗前端;(b)跨阻抗前端 图4.10 光接收机前端的等效电路 (a)高(低)阻抗前端;(b)跨阻抗前端 2018/11/12 OE of HUST

光接收机前端的设计应折衷考虑速度和灵敏度这两个指标。由于采用较大的负载阻抗RL可以提高输入到前置放大器的电压,因而高阻抗前端经常被采用,如图4.10(a)所示。同时大的负载阻抗可以降低热噪声,提高接收机灵敏度。但高阻抗前端的主要缺点在于其带宽较低,由带宽表达式 可知,负载电阻越大,带宽越小,其中 表示光电二极管和用于放大的晶体管带来的总电容。 2018/11/12 OE of HUST

接收机的带宽受它的低频分量所限制,如果带宽小于信号的比特率,则这种高阻抗前端不能被采用。有时需要采用均衡器来提高带宽,均衡器对低频分量的衰减比对高频分量的多,因而可以有效地提高前端的带宽。对于接收机的灵敏度不是最关键指标的通信系统,当然,可以简单地采用减小RL的方法来增加带宽,但必然会引起灵敏度的降低,热噪声的增加。这种小负载阻抗的前端称为低阻抗前端。 2018/11/12 OE of HUST

跨(互)阻抗前端能同时具备以上两种前端的优点,在具备高灵敏度的同时,也具有大的带宽。如图4 跨(互)阻抗前端能同时具备以上两种前端的优点,在具备高灵敏度的同时,也具有大的带宽。如图4.10(b)所示,这种前端将负载电阻连接为反相放大器的反馈电阻,因而又称互阻抗前端,它是一个性能优良的电流—电压转换器,即使RL很高,而负反馈使有效输入阻抗降低了G倍,G是前置放大器增益,从而使其带宽比高阻抗前端增加了G倍。 2018/11/12 OE of HUST

4.3.2 光接收机的线性通道 光接收机的线性能道由一个高增益放大器(称为主放大器)和一个低通滤波器组成。有时在主放大器前接入一个均衡器以校正前端有限的带宽。主放大器的增益可以自动调整以使平均输出电压限制在固定电平而不随输入平均光功率而变。低通滤波器对电压脉冲进行整形,降低噪声,以避免引起码间串扰(ISI)。由后面一节中对噪声的分析可知,接收机噪声正比于接收机带宽,可采用带宽 小于比特率B的低通滤波器来降低噪声。在接收机设计中其他部件的带宽均大于该低通滤波器的带宽,因此接收机带宽主要由线性通道的低通滤波器决定。当 时,电脉冲展宽超过了规定的比特时隙,将可能干扰相邻比特时隙的检测,引起码间串扰。滤波器设计时应使码间串扰减小到最低程度。 2018/11/12 OE of HUST

前置放大器,主放大器和滤波器起一个线性系统的作用,故可称为线性通道,线性通道的输出电压可写为 (4.3.1) (4.3.2) 前置放大器,主放大器和滤波器起一个线性系统的作用,故可称为线性通道,线性通道的输出电压可写为 式中Ip(t)为光电二极管的输出光电流( )。经傅里叶变换,在频域可得 式中ZT是频率ω处的总阻抗;“~”对应傅里叶变换结果, 2018/11/12 OE of HUST

ZT (ω)由接收机各组成部分对应的传递函数决定,可表示为 式中, 是输入导纳; 、 和 分别为前置放大器、主放大器和滤波器的传递函数。将式(4.3.2)中的 和 作归一化处理,得到归一化谱函数 和 ,这两个谱函数分别与输入和输出脉冲的傅里叶变换相关。 (4.3.3) 2018/11/12 OE of HUST

式中, 为线性通道的总传递函数,与总阻抗 的关系为 = 。若放大器的带宽远大于低通滤波器的带宽,则有 。 式(4.3.2)可改写成 式中, 为线性通道的总传递函数,与总阻抗 的关系为 = 。若放大器的带宽远大于低通滤波器的带宽,则有 。 研究表明,当对应升余弦滤波器的传递函数时 码间串扰(ISI)最小,式中 ,B为比特率。 (4.3.4) (4.3.5) 2018/11/12 OE of HUST

对上式作傅里叶逆变换,得线性通道的响应为 对应于线性通道输出判决电路接收到的电压脉冲 的形状。在t=0判决时刻, =1,信号最大,而当t=m/B,m为整数时, =0,t=m/B对应于相邻比特的判决时刻。所以式(4.3.6)对应的电脉冲不会干扰相邻比特。 (4.3.6) 2018/11/12 OE of HUST

(4.3.7) (4.3.8) 线性通道的输出波形由(4.3.6)式决定,进而由(4.3.4)式可以得到线性通道的传递函数 ,并可写成 线性通道的输出波形由(4.3.6)式决定,进而由(4.3.4)式可以得到线性通道的传递函数 ,并可写成 对于非归零(NRZ)格式的理想比特流(脉宽TB=1/B的矩形脉冲), ,则有 (4.3.8)式表示为了理想情况下线性通道的频率响应。但必须注意,输入脉冲通常都不是理想矩形脉冲,输出脉冲波形也不与(4.3.6)式相对应,因而不可避免地会发生一定程度的码间串扰。 (4.3.7) (4.3.8) 2018/11/12 OE of HUST

图4.11 非归零格式的理想和退化眼图 2018/11/12 OE of HUST

2018/11/12 OE of HUST

Chapter 4 Optical Receivers Basic Concept Common Photodetectors Receiver Design Receiver Noise Receiver Sensitivity Sensitivity Degradation 2018/11/12 OE of HUST

Wiener-Khinchin theorem 4.4.1 Noise Mechanisms Shot noise: electrons are generated at random times Photodiode current  A stationary random process with Poisson statistics (approximated by Gaussian statistics) Wiener-Khinchin theorem 2018/11/12 OE of HUST

considering the dark current Id, the two-sided spectral density the one-sided spectral density considering the dark current Id, 2018/11/12 OE of HUST

Thermal noise: At a finite temperate, electrons move randomly in a resistor in the absence of an applied voltage. iT(t): a current fluctuation induced by thermal noise A stationary random process with Gaussian statistics Fn: factor by which thermal noise is enhanced by various resistors used in pre and main amplifier 2018/11/12 OE of HUST

is(t), iT(t), are independent random processes Total noise is(t), iT(t), are independent random processes 2018/11/12 OE of HUST

4.4.2 p-i-n Receivers Noise-equivalent power (NEP): optical power per unit bandwidth required to produce SNR=1 Detectivity: (NEP) -1 Thermal-noise limit 2018/11/12 OE of HUST

Shot-noise limit SNR can be written in term of the number of photon Np contain in the “1” bit by choosing 2018/11/12 OE of HUST

4.4.3 APD Receivers Shot – noise enhancement Secondary electron-hole pairs generates at random times through the process of input ionization. FA(M): the excess noise factor 2018/11/12 OE of HUST

2018/11/12 OE of HUST

Thermal – noise limit Shot – noise limit: Optimum APD gain 2018/11/12 OE of HUST

2018/11/12 OE of HUST

Chapter 4 Optical Receivers Basic Concept Common Photodetectors Receiver Design Receiver Noise Receiver Sensitivity Sensitivity Degradation 2018/11/12 OE of HUST

4.5 Receiver Sensitivity 4.5.1 Bit - Error Rate BER (bit - error rate) : probability of incorrect identification of a bit by the decision circuit of the receiver. Sensitivity: the minimum average received power Prec required by the receiver to operate at a BER of 10 -9 . 4.5.1 Bit - Error Rate Threshold value ID and bit error (Fig.4.18) When bit error will occur? BER (assuming p(1)=p(0)=1/2) 2018/11/12 OE of HUST

2018/11/12 OE of HUST

(complementary error function) 2018/11/12 OE of HUST

decision threshold ID should be optimized to minimize the BER. The minimum occurs when ID is chosen such that: 2018/11/12 OE of HUST

2018/11/12 OE of HUST

4.5.2 Minimum Received Power Average received power 2018/11/12 OE of HUST

PIN: APD: 2018/11/12 OE of HUST

4.5.4 Quantum limit of photodetection 4.5.3 BER & SNR Thermal–noise limit Shot–noise limit 4.5.4 Quantum limit of photodetection DIY! 2018/11/12 OE of HUST

Chapter 4 Optical Receivers Basic Concept Common Photodetectors Receiver Design Receiver Noise Receiver Sensitivity Sensitivity Degradation 2018/11/12 OE of HUST

4.6 Sensitivity Degradation Power penalty: The increase in the minimum average received power because of non-ideal conditions: extinction ratio; intensity noise; timing jitter; mode-partition noise; parasitic reflections 2018/11/12 OE of HUST

4.6.1 Extinction Ratio ideal: rex =0 in fact: rex ≠0 Ib<Ith, P0=0, relaxation oscillation and electro-optical delay rise up. Ib>Ith, P0≠0, rex ≠0, modulation bandwidth rises up. For a PIN receiver, in the thermal noise limit: Power penalty: For a APD receiver, δex is larger by a factor of about 2 2018/11/12 OE of HUST

4.6.2 Intensity Noise Power fluctuation current fluctuation mode partition noise; parasitic reflection 2018/11/12 OE of HUST

BER floor! 2018/11/12 OE of HUST

4.6.3 timing jitter 2018/11/12 OE of HUST

2018/11/12 OE of HUST

Chapter 5 Lightwave Systems 5.1 System Architectures 5.1.1 P2P 2018/11/12 OE of HUST

5.1.2 Distribution Networks 2018/11/12 OE of HUST

5.2 Design Guidelines 5.2.1 Power Budget 2018/11/12 OE of HUST

5.2.2 Rise-time Budget The rise time of RC circuit Tr 2018/11/12 OE of HUST

5.2.2 Rise-time Budget 2018/11/12 OE of HUST

思考题 某单模光纤通信线路长90km,工作在1550nm,色散系数D=16ps/nmkm。若已知光发射机和光接收机的上升时间分别为Ttr=50ps和Trec=20ps,考虑单纵模激光器的半高全宽谱宽Δλ=0.2nm,输入信号为RZ格式,按照上升时间预算线路允许工作速率为多少? 2018/11/12 OE of HUST