遙測在環境監測之應用 Remote Sensing for Environmental Monitoring

Slides:



Advertisements
Similar presentations
應用聯合分析法探討婦女對子宮頸癌篩檢方案之偏 好 子宮頸癌是國人常見之婦女癌症,民國 95 年的發生率為台灣婦女癌症之第二 位,死亡率為第六位。許多研究證實子宮頸癌篩檢為預防子宮頸癌最有效之 方法,我國婦女的子宮頸癌篩檢率低是導致子宮頸癌發生率及死亡率偏高的 重要原因,顯示如何提升篩檢率為一重要議題。因此本研究擬瞭解婦女受檢.
Advertisements

豬隻體內兒茶素之抗氧化效能與腸道作用研究
Basic concepts of structural equation modeling
統合分析臨床試驗實之文獻品質評分:以針灸療法之統合分析為例
牙齒共振頻率之臨床探討 論 文 摘 要 論文名稱:牙齒共振頻率之臨床探討 私立台北醫學院口腔復健醫學研究所 研究生姓名:王茂生 畢業時間:八十八學年度第二學期 指導教授:李勝揚 博士 林哲堂 博士 在口腔醫學的臨床診斷上,到目前為止仍缺乏有效的設備或方法可以評估或檢測牙周之邊界狀態。臨床上有關牙周病的檢查及其病變之診斷工具,
汇报人:李臻 中国海洋大学信息科学与工程学院 计算机科学与技术系
二維品質模式與麻醉前訪視滿意度 中文摘要 麻醉前訪視,是麻醉醫護人員對病患提供麻醉相關資訊與服務,並建立良好醫病關係的第一次接觸。本研究目的是以Kano‘s 二維品質模式,設計病患滿意度問卷,探討麻醉前訪視內容與病患滿意度之關係,以期分析關鍵品質要素為何,作為提高病患對醫療滿意度之參考。 本研究於台灣北部某醫學中心,通過該院人體試驗委員會審查後進行。對象為婦科排程手術住院病患,其中實驗組共107位病患,在麻醉醫師訪視之前,安排先觀看麻醉流程衛教影片;另外對照組111位病患,則未提供衛教影片。問卷於麻醉醫師
Physician Financial Incentives and Cesarean Section Delivery
Analysis of Remote Sensing
Chapter 4. Logistics Information Management
B型肝炎帶原之肝細胞癌患者接受肝動脈栓塞治療後血液中DNA之定量分析
Chap. 4 Techniques of Circuit Analysis
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
分析抗焦慮劑/安眠劑之使用的影響因子在重度憂鬱症及廣泛性焦慮症病人和一般大眾的處方形態
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
Chaoping Li, Zhejiang University
袁 星 谢正辉,梁妙玲 中国科学院大气物理研究所
Platypus — Indoor Localization and Identification through Sensing Electric Potential Changes in Human Bodies.
Thinking of Instrumentation Survivability Under Severe Accident
Manifold Learning Kai Yang
Digital Terrain Modeling
The Empirical Study on the Correlation between Equity Incentive and Enterprise Performance for Listed Companies 上市公司股权激励与企业绩效相关性的实证研究 汇报人:白欣蓉 学 号:
Journal Citation Reports® 期刊引文分析報告的使用和檢索
中国的环境空气质量监测Ambient air quality monitoring in P.R.China
第十章 基于立体视觉的深度估计.
研究、論文、計畫與生活之平衡 演講人:謝君偉 元智大學電機系 2018年11月22日.
Watershed Management--10
Digital Terrain Modeling
Decision Support System (靜宜資管楊子青)
DESERT.
Coupling TRIGRS and TOPMODEL in shallow landslide Prediction
生物芯片技术 刘超 李世燕 谢宏林
The role of leverage in cross-border mergers and acquisitions
第三章 基本觀念 電腦繪圖與動畫 (Computer Graphics & Animation) Object Data Image
971研究方法課程第九次上課 認識、理解及選擇一項適當的研究策略
有机酸类化感物质对甜瓜的化感效应 张志忠1,孙志浩1,陈文辉2,林文雄3, *
參加2006 SAE年會-與會心得報告 臺灣大學機械工程系所 黃元茂教授
Formal Pivot to both Language and Intelligence in Science
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
Chapter 8 Thermodynamics of High-Speed Gas Flow (第8章 气体和蒸气的流动)
2012清大電資院學士班 「頂尖企業暑期實習」 經驗分享心得報告 實習企業:工業技術研究院 電光所 實習學生:電資院學士班  呂軒豪.
A Study on the Next Generation Automatic Speech Recognition -- Phase 2
Decision Support System (靜宜資管楊子青)
第三章 基本觀念 電腦繪圖與動畫 (Computer Graphics & Animation) Object Data Image
VIDEO COMPRESSION & MPEG
研究技巧與論文撰寫方法 中央大學資管系 陳彥良.
Introduction to Basic Statistics
Introduction to Basic Statistics
Design and Analysis of Experiments Final Report of Project
2019/4/21 大眾運輸服務品質之同時且多重績效評估 指導教授:任維廉 科管碩一 魏岑溪.
Dual-Aircraft Investigation of the Inner Core of Hurricane Nobert
Inter-band calibration for atmosphere
Journal of Applied Meteorology, 39,
第九章 明暗分析 Shape from Shading SFS SFM SFC SFT …… SFX.
題目:衛星遙測於水質監測之應用 講者:中華大學土木工程學系 陳莉教授 時間:民國101年12月26日 遙測緣起與發展
An Efficient MSB Prediction-based Method for High-capacity Reversible Data Hiding in Encrypted Images 基于有效MSB预测的加密图像大容量可逆数据隐藏方法。 本文目的: 做到既有较高的藏量(1bpp),
An organizational learning approach to information systems development
高效洁净机械制造实验室是 2009 年教育部批准立项建设的重点实验室。实验室秉承“突出特色、创新发展“的宗旨,以求真务实的态度认真做好各项工作。 实验室主任为黄传真教授,实验室副主任为刘战强教授和李方义教授。学术委员会主任为中国工程院院士卢秉恒教授。实验室固定人员中,有中国工程院院士艾兴教授,教育部.
Resources Planning for Applied Research
Multiple Regression: Estimation and Hypothesis Testing
Water Scarcity and Pollution
Fei Chen and Jimy Dudhia April 2001 (Monthly Weather Review) 報告:陳心穎
Principle and application of optical information technology
之前都是分类的蒸馏很简单。然后从分类到分割也是一样,下一篇是检测的蒸馏
WiFi is a powerful sensing medium
Gaussian Process Ruohua Shi Meeting
Hybrid fractal zerotree wavelet image coding
CAI-Asia China, CATNet-Asia
Presentation transcript:

遙測在環境監測之應用 Remote Sensing for Environmental Monitoring 鄭 克 聲 台灣大學生物環境系統工程學系 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Definition of Remote Sensing The science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation. 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Energy Sources Modern remote sensing systems use electromagnetic energy as the source for image acquisition. 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Primary Spectral Regions Used in Earth Remote Sensing 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Energy Interactions In the atmosphere With earth surface features Scattering Absorption With earth surface features Reflected Absorbed Transmitted 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Paths of Energy Reaching the Sensor 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Spectral Signatures Spectral reflectance curves Spectral emittance curves (wavelength > 3.0 m ) 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Satellite Remote Sensing Systems Land surface observation Landsat SPOT ASTER IKONOS ALOS Quick bird Meteorological observation GMS NOAA series GOSAT Sea surface observation 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Closer Look of Remote Sensing Images GMS – Visible, IR SPOT – Panchromatic, MSS FORMOSAT-II IKONOS – Panchromatic GOSAT Airborne image 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Remote Sensing Image Analysis Pixel by pixel Signal processing in nature Require sophisticated softwares Employ mathematical/statistical methods Multitemporal and multispectral images are often used. Field data are essential. 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Applications for Environmental Monitoring 土地利用與地表覆蓋判識 (Landuse/landcover interpretation) 地表變遷偵測與崩塌地辨識 (Land surface change detection and landslides identification) 作物生長狀況與水分逆境監測 (Monitoring crop growing condition and water stress) 區域蒸發散量推估 (Estimation of regional evapotranspiration) 水庫水質及優養狀態監測 (Monitoring of reservoir water quality and trophic status) 即時雨量預報 (Real-time rainfall forecasting) 瘧疾高風險區之劃定(Mapping areas with high risk of malaria) 乾旱監測與預警 (Drought monitoring and warning) 洪水平原與淹水區域劃定 (Mapping the floodplain and inundation zones) 森林火災監測 (Forest fire monitoring) 二氧化碳濃度監測 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

土地利用與地表覆蓋判識 (Landuse/landcover interpretation) Multispectral images Spectral response patterns Can use both spectral and textural features for classification Supervised classification and unsupervised classification (cluster analysis) Illustrative example 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Landcover (Taipei) 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Landcover (Taipei) 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Scattering of Training Pixels in 2-D Feature Space (IR and Green) 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Landcover (Taipei) Partition of a 2-dimensional feature space (Infrared and Green; Indicator kriging) 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Landcover (Taipei) Partition of a 2-dimensional feature space (Infrared and Green, Max. Likelihood) 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Land Surface Change Detection and Landslides Identification Multitemporal and multispectral Images Image-to-image registration Band ratioing (IR/R) of multitemporal images Band-ratio difference image Determine the percentage of LSC (histogram matching for band-ratio images) Determine the change detection threshold value (histogram of the band-ratio difference image) Usage of DEM data 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

IR band image pair after image-to-image registration Image of 21/09/2001 Image of 01/10/1999 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

IR/R Band-Ratio Difference Image 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Illustrative Grey-level Histogram of Band-Ratio Difference Image 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Initial Landcover Change Identification 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Identified Landslide Sites 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Airphotos taken before and after Typhoon Toraji of an identified landslide site Before Toraji After Toraji 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Reservoir Trophic State Evaluation Using Landsat TM Images Carlson Trophic State Indices (CTSI) Based on measurements of SDD, Chla and TP. Empirical relationships among the three inter-correlated parameters. CTSI is developed based on local and empirical relationships. Three indices corresponding to SDD, Chla and TP. 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Carlson’s trophic state indices Commonly used trophic states oligotrophic TSI  40; mesotrophic 40 < TSI  50; eutrophic 50 < TSI. Direct application of CTSI in Taiwan is inadequate. 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Te-Chi Reservoir trophic state indices Reservoir TSI Estimation using Landsat TM images 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Study Area 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

TM-derived TSI(Chla) images 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

TM-derived TSI(TP) images 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

TM-derived TSI(SDD) images 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Ttrophic state classes from upstream to outlet of the reservoir (10/01/1995) 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Ttrophic state classes from upstream to outlet of the reservoir (22/07/1996) 台灣大學生物環境系統工程學系 Lab for Remote Sensing Hydrology and Spatial Modeling 遙測水文及空間模式研究室 Dept. of Bioenvironmental Systems Engineering, NTU

Path radiance calibration using in-situ measurements of radiometric control areas An algorithm for path radiance calibration using surface reflectance measurements in two RCAs of the same topographic (unobstructed and horizontal) and landcover conditions was proposed.

RCA-based algorithm

Nonparametric classification algorithm A Feature-Space Indicator Kriging Approach for Remote Sensing Image Classification (IEEE Transactions on Geoscience and Remote sensing) Nonparametric classification algorithm High classification accuracies (Producer’s, user’s, and overall accuracies) Account for spatial continuity in feature space, instead of geographic space.

Hypothesis-Test-Based Landcover Change Detection Using Multitemporal Satellite Images (Advances in Space Research) Two hypothesis-test-based change detection methods, namely the bivariate joint distribution method and the conditional distribution method, are proposed to tackle the uncertainties in change detection by making decisions based on the desired level of significance.

Image-differencing method Multiples of standard deviation of DN difference Nelson (1983): k = 0.5~1 Ridd and Liu (1998): k = 0.9~1.4 Sohl (1999): k = 2

BVN and Conditional distribution

Detected Changes Area-A α=1% α=5% α=10%

Area-B

Area-A

Area-B

Overall Accuracy vs Level of Significance Area-A Area-B

A Multivariate Model for Coastal Water Quality Mapping Using Satellite Remote Sensing Images (Sensors) This study demonstrates the feasibility of coastal water quality mapping using satellite remote sensing images. Water quality sampling campaigns were conducted over a coastal area in northern Taiwan for measurements of three water quality variables including Secchi disk depth, turbidity, and total suspended solids. A spectral reflectance estimation scheme proposed in this study was applied to SPOT multispectral images for estimation of the sea surface reflectance. Two models, univariate and multivariate, for water quality estimation using the sea surface reflectance derived from SPOT images were established. The multivariate model takes into consideration the wavelength-dependent combined effect of individual seawater constituents on the sea surface reflectance and is superior over the univariate model.

Spatial distribution of secchi disk depth

Spatial distribution of turbidity

Spatial distribution of total suspended solids

Assessing the effect of landcover on air temperature using remote sensing images – A pilot study in northern Taiwan (Landscape and Urban Planning) NOAA AVHRR thermal images were used for surface temperature retrieval using the split window technique. SPOT multispectral images were used for landcover classification using the supervised maximum likelihood classification method. Through an inversion algorithm, landcover-specific surface temperatures were estimated. Locally calibrated relationships between surface and air temperatures with respect to different landcover types were developed using field data and used to yield average air temperatures over individual NOAA pixels.

Spatial variation of apparent surface temperature

Landcover conversion pattern

Under the prevalent landcover conversion, reducing the within-pixel coverage ratio of paddy fields from the maximum of 26% to none will result in an ambient air temperature rise of 1.7 to 3.1C. Forced landcover conversion contradict the existing landcover pattern and may cause complicated consequences. Addition resources allocation and incentives may need to be introduced in order to ensure a successful forced conversion.

Comparing landcover patterns in Tokyo, Kyoto, and Taipei using ALOS multispectral images (Landscape and Urban Planning) Understanding the landcover pattern of a region is essential for landuse planning and resources management. In this study ALOS multispectral images were used to compare landcover patterns in three study areas, namely Tokyo, Kyoto, and Taipei, of different degrees of urbanization. From the results of landcover classification, Shannon diversity index at cell level was used as a landscape metric for landcover pattern analysis. Existing landcover pattern of the three study areas were also compared by investigating cell distribution in a landcover coverage-ratio space. Both the landcover type richness and evenness are low in most of the Tokyo study area and built-up is the single dominant landcover type in almost all cells. In comparison, landcover patterns of the Kyoto and Taipei study areas are more diversified, with significant amount of cells having mixed and non-dominant landcover types. Kyoto is least urbanized and enjoys a good mixture of different landcover types. It was found that cell-average NDVI alone can be used for delineating areas with different dominant landcover types. Implementation of such method does not require an a priori LULC classification, and thus is particularly useful when good training data for LULC classification are not available.

Study areas and landcover images

Landcover vs SHDI images

Demonstration of higher SHDI in cells covering rivers and mountain foothills.

Landcover pattern in coverage-ratio space

Relationship between cell-average NDVI and cell-level SHDI.

Relationships between coverage ratios of different landcover types within individual cells of the Kyoto study area.

Areas of different dominant landcover types in the three study areas delineated using cell-average NDVI.

Cell-average NDVI alone can be used for delineating areas with different dominant landcover types. Implementation of such method does not require an a priori LULC classification, and thus is particularly useful when good training data for LULC classification are not available.