廠商概論 廠商在要素市場中雇用生產要素(包括勞動、資本、土地、企業能力),用以生產產品,並將產品在產品市場中銷售。 為什麼會有廠商? 寇斯 (R. Coase):降低交易成本。 廠商的決策目標是追求最高利潤。 利潤(經濟利潤)= 收益 – 成本 收益:廠商販售商品所得到的收入,即銷貨收入。 成本:即經濟成本,是機會成本的概念。 機會成本:當決策者做了某項選擇,其所放棄的選擇機會中,成本最高的機會所對應的成本。 基礎經濟學 Chapter 5 生產理論與成本分析
生產函數 (一) 生產函數 Q = f (X1,…,Xn) 刻劃 n 種生產要素 (X1, X2, …, Xn) 的數量與產品數量 (Q) 間的函數關係。 若僅有勞動 (L)、資本 (K) 兩種生產要素,生產函數可表示為 Q = f (L, K)。 生產期間分為短期 (SR) 與長期 (LR)。 短期內無法調整的生產要素,稱為固定生產要素。例如資本。 短期內可變動的生產要素,稱為變動生產要素。例如勞動。 在長期間,所有的生產要素數量均可調整。 基礎經濟學 Chapter 5 生產理論與成本分析
生產函數 (二) 短期、長期生產函數的區分如下: 短期生產函數:Q = f (L, K0) 長期內,勞動雇用量與資本雇用量均可變動。 基礎經濟學 Chapter 5 生產理論與成本分析
產量分析-短期分析 (一) 短期生產函數:Q = f (L, K0) 總產量 TP = f (L, K0) 平均產量 AP:平均每單位生產要素所能生產的產量。 勞動的平均產量 = APL 邊際產量 MP:其他要素使用量固定不變,某種生產要素使用量變動些許,所引起的總產量變動。 勞動的邊際產量 = MPL 基礎經濟學 Chapter 5 生產理論與成本分析
產量分析-短期分析 (二) (a) 許媽媽包子店的總產量 產量 勞動 20 15 10 5 1 2 3 4 6 7 25 B A C D E 1 2 3 4 6 7 25 B A C D E F G TP 基礎經濟學 Chapter 5 生產理論與成本分析
產量分析-短期分析 (三) 圖 5.1 總產量、平均產量與邊際產量的範例 (b)許媽媽包子店的平均產量與邊際產量 6 4 2 -2 -4 1 -2 -4 1 3 5 7 產量 勞動 (b)許媽媽包子店的平均產量與邊際產量 AP MP 基礎經濟學 Chapter 5 生產理論與成本分析
產量分析-短期分析 (四) 總產量、平均產量與邊際產量的關係 TP 線上任一點切線斜率 = 該點 MP。 圖 5.2 總產量、平均產量與邊際產量的關係 TP AP MP 總產量、平均產量與邊際產量的關係 TP 線上任一點切線斜率 = 該點 MP。 L 低於 L0 時,TP 線的切線斜率隨著 L 增加而遞增,表示對應的 MP 亦隨 L 的增加而遞增。 TP 線在 L0 處轉折點,切線斜率由遞增轉為遞減,顯示 MP 在 L0 處達到高峰,繼而開始遞減。 TP 線在 L2 處達最高點,對應的切線斜率值為 0,故 MP 亦為 0。 基礎經濟學 Chapter 5 生產理論與成本分析
產量分析-短期分析 (五) TP 線上任一點與原點連線的斜率,為該點對應的 AP。 圖 5.2 總產量、平均產量與邊際產量的關係 TP AP MP TP 線上任一點與原點連線的斜率,為該點對應的 AP。 TP 線與原點連線的斜率於 L1 處達到最大,因此 AP 線於 L1 達到最高,而在 L1 之前是處於遞增階段,之後則開始遞減。 基礎經濟學 Chapter 5 生產理論與成本分析
產量分析-短期分析 (六) 當 MP 高於 AP,AP 線處於遞增階段。 當 MP 低於 AP,AP 線處於遞減階段。 圖 5.2 總產量、平均產量與邊際產量的關係 TP AP MP 當 MP 高於 AP,AP 線處於遞增階段。 當 MP 低於 AP,AP 線處於遞減階段。 MP 線必然通過 AP 線的最高點。 基礎經濟學 Chapter 5 生產理論與成本分析
產量分析-短期分析 (七) 例:鐵達尼號的乘客依次上船,前 50 名乘客的平均體重為 60 公斤, 如果第 51 名乘客體重達 100 公斤,因其「邊際體重」高於原有乘客的「平均體重」,這 51 名旅客的平均體重的數值為 (50 × 60 + 100)/51 = 60.8 公斤,高於原有 50 名乘客的平均體重 60 公斤。 如果第 51 名乘客的體型像衝浪板,體重僅有 40 公斤,會將 51 名乘客的平均體重拉低為 (50 × 60 + 40)// 51 = 59.6公斤。 基礎經濟學 Chapter 5 生產理論與成本分析
產量分析-短期分析 (八) 不管我們考慮的變數值是體重、成績、成本或產量,下列關係始終成立: 當「邊際變數值」高於「平均變數值」,「平均變數值」會遞增。 當「邊際變數值」低於「平均變數值」,「平均變數值」會遞減。 基礎經濟學 Chapter 5 生產理論與成本分析
邊際報酬遞減法則 倒 U 形 MP 線的經濟意義: 勞動的 MP 會先隨著勞動數量的增加而增加,當勞動數量增加到一定程度後,MP 開始遞減,甚或可能出現負值。 隨著勞動雇用量的增加,勞動的邊際產量終會出現遞減的現象,現象稱為邊際報酬遞減法則 (law of diminishing marginal returns)。 圖 5.1 總產量、平均產量與邊際產量的範例 AP MP 基礎經濟學 Chapter 5 生產理論與成本分析
產量分析-長期分析 (一) 長期生產函數: Q = f (L, K) 在同一條等產量線上的任意資本、勞動組合,均可生產同樣產量。 Q0 Q1 Q2 圖 5.3 等產量線的圖示 基礎經濟學 Chapter 5 生產理論與成本分析
產量分析-長期分析 (二) 等產量線上任意一點切線斜率之絕對值,為該點的邊際技術替代率 (marginal rate of technical substitution,簡寫為 MRTS)。 C 點切線斜率的絕對值 v/u,即為該點的邊際技術替代率,顯示自 C 點減少微量的勞動,在維持 Q0 的產量水準之下,所必須增加的資本數量為 v/u。 Q0 Q1 Q2 圖 5.3 等產量線的圖示 基礎經濟學 Chapter 5 生產理論與成本分析
產量分析-長期分析 (三) 邊際技術替代率的另一種表示法: MPL :勞動邊際產量。 MPK :資本邊際產量。 邊際技術替代率可以刻劃兩種要素在生產上的替代關係,如果邊際技術替代率愈高,表示兩種要素在生產上的替代性愈強。 隨著某種生產要素使用量的增加,用這種生產要素替代另一種要素的可能性會愈來愈弱,這表示邊際技術替代率具有遞減的特性。 基礎經濟學 Chapter 5 生產理論與成本分析
產量分析-長期分析 (四) 如果勞動與資本的 MP 為正、MRTS 遞減、勞動與資本可以細分切割等假設成立,則等產量線會具有下列特性: 等產量線的斜率為負 愈往東北方的等產量線對應的產量水準愈高 (Q2 > Q1 > Q0) 等產量線凸向原點 L-K 平面上任一點均有一條等產量線通過 Q0 Q1 Q2 圖 5.3 等產量線的圖示 基礎經濟學 Chapter 5 生產理論與成本分析
特殊的等產量線-完全互補 如果一台打字機必須配合一名打字員,才能生產出一定數量的「打字稿」,則打字機與打字員在生產上是完全互補的關係。 Q2 基礎經濟學 Chapter 5 生產理論與成本分析
特殊的等產量線-完全替代 每一套電話自動轉接系統,如果能完全取代若干電話接線生,則電話自動轉接系統、電話接線生在生產上是完全替代的關係。 電話轉接系統 接線生 Q0 Q1 Q2 (b) 資本與營動完全替代 每一套電話自動轉接系統,如果能完全取代若干電話接線生,則電話自動轉接系統、電話接線生在生產上是完全替代的關係。 基礎經濟學 Chapter 5 生產理論與成本分析
成本分析 在雇用勞動時,廠商會給付工資予勞動者以為酬勞,因此勞動的價格即為工資率 (wage rate,簡寫為 w)。 至於廠房與機器設備,最簡單的情形是由廠商逐期向外租用,假設每一單位的租用成本為 r,則 r 可視為資本的價格。 基礎經濟學 Chapter 5 生產理論與成本分析
短期成本分析 (一) 總成本 (TC):支付給生產要素的全部成本。 總固定成本 (TFC):支付固定生產要素的報酬。與產量無關,為一固定數額。例如裝潢、招牌、爐具。 總變動成本 (TVC):支付變動生產要素的報酬。產量越多,所需雇用的變動生產要素越多,總變動成本就越高。 TC = TFC + TVC 基礎經濟學 Chapter 5 生產理論與成本分析
短期成本分析 (二) 平均成本 (AC):平均每單位產量分攤的總成本 平均固定成本 (AFC):平均每單位產量分攤的總固定成本 平均變動成本 (AVC):平均每單位產量分攤的總變動成本 邊際成本 (MC):每增加一單位產量,所對應的總成本變動量 基礎經濟學 Chapter 5 生產理論與成本分析
短期成本分析 (三) 假設每名勞工的工資率為 5 元,資本設備設算的利息為 10 元。 TC TVC TFC TC 線在任意點的高度,是 TVC、TFC 兩線對應點高度加總的結果。 基礎經濟學 Chapter 5 生產理論與成本分析
短期成本分析 (四) 因為 AFC = TFC/Q,隨著產量增加,平均每單位產量所分攤的固定成本愈少,AFC 線必然不斷下降。 AC 線在任一點的高度,是 AVC、AFC 兩線對應點高度加總的結果。 隨著產量增加,AFC 線下降的趨勢先會主導 AC 線下降,但當產量增加到一定程度後, MC 的上升會帶動 AC 上升,使 AC 線呈正斜率,因此 AC 線亦可能呈 U 字形。 MC AC AVC AFC 基礎經濟學 Chapter 5 生產理論與成本分析
短期成本分析 (五) TC 或 TVC 線任一點切線斜率 = MC,當 TC 或 TVC 線處於轉折點時,MC 線達最低點 TFC MC AC AVC AFC 圖 5.6 短期總成本、平均成本 與邊際成本的關係 TC 或 TVC 線任一點切線斜率 = MC,當 TC 或 TVC 線處於轉折點時,MC 線達最低點 TC 線上任一點與原點連線斜率 = AC TVC 線上任一點與原點連線斜率 = AVC TFC 線上任一點與原點連線斜率 = AFC AFC線呈負斜率 基礎經濟學 Chapter 5 生產理論與成本分析
長期成本分析 (一) 長期之中,所有的生產要素數量均可以調整,因此不需要區分變動成本與固定成本。 長期生產函數 Q = f (L, K) 可以用等產量線在 L-K 平面上刻劃;同理,我們可以用等成本線在 L-K 平面上表現要素組合與成本間的關係。 等成本線的概念與消費者的預算線相近;在同一條等成本線上的任意 L-K 組合,具有相同的成本水準。 B 資本 勞動 L0 A 圖 5.7 廠商成本最低的要素組合 基礎經濟學 Chapter 5 生產理論與成本分析
長期成本分析 (二) 在 l0 上的任意 (K, L) 組合,均滿足下式: rK + wL = C0 l1 線對應的成本水準高於 l0 線,C1 > C0。 由等成本線兩軸的截距可知等成本線的斜率反映了兩種生產要素的相對價格 w/r。 B 資本 勞動 L0 A 圖 5.7 廠商成本最低的要素組合 基礎經濟學 Chapter 5 生產理論與成本分析
長期成本分析 (三) 給定 Q0 的產量,如果廠商要使生產成本最低,所選擇的要素組合應位於等產量線與等成本線的切點,亦即 A 點對應的 (L0, K0) 組合。 由於等產量線切線的斜率為 L 與 K 的邊際技術替代率 MRTS,而等成本線的斜率為 w/r,故在等產量線與等成本線的切點, B 資本 勞動 L0 A 圖 5.7 廠商成本最低的要素組合 基礎經濟學 Chapter 5 生產理論與成本分析
長期成本分析 (四) 表示兩種要素在市場上的兌換比,恰等於兩種要素在生產技術上的替換關係。 若 MPL/ MPK > w/r,如 B 點。由於 B 點對應的成本水準 C1 高於 C0 ,廠商顯然可以在維持產量不變的前提下,減少資本使用、增加勞動使用,使總生產成本降低,並使最適要素組合朝向 A 點移動。 同理,若MPL/ MPK < w/r,對應的要素組合必非最適組合。 B 資本 勞動 L0 A 圖 5.7 廠商成本最低的要素組合 基礎經濟學 Chapter 5 生產理論與成本分析
長期成本分析 (五) 要生產 Q0 的產量,廠商成本最低的要素組合為 A 點,其對應的總成本為 C0 。 要生產 Q1 的產量,廠商成本最低的要素組合為 B 點,其對應的總成本為 C1。以此類推。 在各個產量水準下,尋找成本最低的要素組合,可得到擴張曲線 (左圖中的 ABC 連線) 。 C B A (a) 廠商成本最低的要素組合 基礎經濟學 Chapter 5 生產理論與成本分析
長期成本分析 (六) 將各產量對應的最低生產成本,如 (Q0, C0)、(Q1, C1) 與 (Q2, C2) 等組合,繪於 Q-C 平面上,即可得到如圖 5.8 (b) 的長期總成本線 (long-run total cost curve,簡稱 LTC 線)。 LTC 線上的每一點,代表在各產量下,用最小成本方式生產所對應的總成本。 LTC 線自原點出發,表示產量為 0 時,不需雇用任何資本、勞動,長期總成本自然為 0 。 LTC (b) 廠商的長期總成本線 基礎經濟學 Chapter 5 生產理論與成本分析
長期總成本、平均成本與邊際成本的關係 長期平均成本 (LAC):平均每單位產量所分攤的長期成本 長期邊際成本 (LMC):每增加一單位產量,對應的長期總成本的變化量 LTC LMC 圖 5.9 長期總成本、平圴成本與邊際成本的關係 基礎經濟學 Chapter 5 生產理論與成本分析
長期總成本、平均成本與邊際成本的關係 LTC、LAC、LMC 間的關係: LTC 線切線斜率 = LMC,當 LTC 線轉折時,LMC 線達最低點。 LTC 線與原點的連線斜率 = LAC 當 LMC 低於 LAC,LAC 線處於遞減階段;反之,LAC 線處於遞增階段。故 LMC 線通過 LAC 線的最低點。 LTC LMC 圖 5.9 長期總成本、平圴成本與邊際成本的關係 基礎經濟學 Chapter 5 生產理論與成本分析
長期與短期成本結構間的關係 (一) 短期內,資本規模固定;長期內,資本規模亦可調整。 令 K2 > K1 > K0,其各自對應的短期平均成本線為 SAC2 、 SAC1 、 SAC0 。 在同樣的勞動數量下,用比較大的資本規模可以生產較多的產量。因此資本規模愈大,對應的短期平均成本線應位於較右方。 圖 5.10 由短期平圴成本線推長期平均成本線 $ Q0 Q2 Q LAC Q1 A C D E G SAC(K0) SAC(K1) SAC(K2) B 基礎經濟學 Chapter 5 生產理論與成本分析
長期與短期成本結構間的關係 (二) -- 1 假設廠商只想生產 Q0 的產量: 若採用 K0 的資本數量,其短期平均成本為 SAC(K0) 線在 Q0 點的高度,亦即Q0 B。 若採用 K1 的資本數量,其短期平均成本為 Q0 A。 由於 Q0 A > Q0 B,所以若要生產 Q0 的產量,長期而言會選擇 K0 資本規模。 圖 5.10 由短期平圴成本線推長期平均成本線 $ Q0 Q2 Q LAC Q1 A C D E G SAC(K0) SAC(K1) SAC(K2) B 基礎經濟學 Chapter 5 生產理論與成本分析
長期與短期成本結構間的關係 (二) -- 2 假設廠商想生產 Q1 的產量 K0、 K1、 K2 三種資本規模對應的短期平均成本分別為 Q1 C、Q1 E、Q1 D。 Q1 E < Q1 D < Q1 C ,故選擇 K1的資本規模。 同理,若廠商想生產 Q2 的產量,則會選擇 K2的資本規模。 圖 5.10 由短期平圴成本線推長期平均成本線 $ Q0 Q2 Q LAC Q1 A C D E G SAC(K0) SAC(K1) SAC(K2) B 基礎經濟學 Chapter 5 生產理論與成本分析
長期與短期成本結構間的關係 (三) 在各個產量之下,我們可以找到成本最低的資本規模,該資本規模對應的短期平均成本,即為廠商的長期平均成本。 長期平均成本線是由各產量下的短期平均成本線之最低點連結而成,因此我們稱長期平均成本線為短期平均成本線的包絡曲線 (envelope curve)。 圖 5.10 由短期平圴成本線推長期平均成本線 $ Q0 Q2 Q LAC Q1 A C D E G SAC(K0) SAC(K1) SAC(K2) B 基礎經濟學 Chapter 5 生產理論與成本分析
長期與短期成本結構間的關係 (四) 若資本數量可以切割細分,則對應的短期平均成本線將會非常密集,每一條短期平均成本線會與 LAC 線切於一點 (如圖 5.11),而非構成 LAC 線的一段 (如圖 5.10)。 圖 5.11 短期與長期成本的關係 LMC 基礎經濟學 Chapter 5 生產理論與成本分析
規模經濟與規模不經濟 規模經濟:長期平均成本隨產量增加而遞減的現象。 規模報酬不變:長期平均成本不因產量增減而改變。 規模不經濟:長期平均成本隨產量增加而遞增的現象。 在一般的情形下,廠商的長期平均成本線呈 U 形,亦即,在開始生產時具有規模經濟,但隨著廠商產量的增加,長期平均成本終會增加,而發生規模不經濟的現象。 LAC 基礎經濟學 Chapter 5 生產理論與成本分析
生產可能線 生產可能線上任意一點,均是在既定的生產要素數量下,以最有效率的生產方式組合生產要素,所能生產出來的產品組合。 基礎經濟學 Chapter 5 生產理論與成本分析
生產可能線 生產可能線為負斜率,顯示在生產要素有效運用的情況下,要增加其中一種產品的產量,必須以減少另一種產品的產量為代價。 沿著生產可能線,當某一產品的產量作微量增加時,另一產品產量的減少量,即為邊際轉換率。 一般的生產可能線會凸向右上方,表示邊際轉換率會隨著產品產量的增加而增加。 基礎經濟學 Chapter 5 生產理論與成本分析
End of Chapter 5 基礎經濟學 Chapter 5 生產理論與成本分析