Challenges in Multimedia Information Retrieval & Filtering

Slides:



Advertisements
Similar presentations
黄国文 中山大学 通用型英语人才培养中的 语言学教学 黄国文 中山大学
Advertisements

2007年8月龙星课程 周源源老师课程体会 包云岗 中科院计算所
应对毕业,你准备好了吗? —— 经管系93级师姐与大家一起寻找答案 2010.防灾学院.
第8章 组织中的人员配备 问题与思考: 海信集团使用“空降兵”,海尔集团与宝洁公司 则不使用空降兵。各自的道理何在?与器官移植 有哪些异同点? 在中低端饭店行业,何种绩效管理模式能使员工 的行为与企业的长远利益相一致?桃源大酒店、 城南往事和微山湖鱼馆的案例。 公司是不是员工的家?该不该是员工的家?
Helping my child with reading and writing(II)
人工智能 Artificial Intelligence 第十一章
全球科研项目整合检索系统 海研网
手持裝置應用系統之設計 與未來發展 黃有評 大同大學 資訊工程系.
第二讲 明确查询方法 提取检索词 《现代信息查询与利用》课程组.
Homework 2 : VSM and Summary
視聽資料之定義 視聽資料 非書資料 多媒體資料.
Semantic-Synaptic Web Mining: A Novel Model for Improving the Web Mining 報告者:陳宜樺 報告日期:2015/9/25.
深層學習 暑期訓練 (2017).
MovieBot: Booking Tickets Easily
Some Effective Techniques for Naive Bayes Text Classification
Applications of Digital Signal Processing
Manifold Learning Kai Yang
資料庫結構與組織.
數位典藏 - 全文檢索系統簡介 Reporter:Chia-Hao Lee
軟體原型 (Software Prototyping)
Knowledge Engineering & Artificial Intelligence Lab (知識工程與人工智慧)
研究、論文、計畫與生活之平衡 演講人:謝君偉 元智大學電機系 2018年11月22日.
圖形溝通大師 Microsoft Visio 2003
Decision Support System (靜宜資管楊子青)
第4章(2) 空间数据库 —关系数据库 北京建筑工程学院 王文宇.
HLA - Time Management 陳昱豪.
Unit 2 Key points summary.
China Standardization activities of ITS
Data Mining 資料探勘 Introduction to Data Mining Min-Yuh Day 戴敏育
報告人:吳家麟教授 資訊網路與多媒體研究所 資訊工程學系暨研究所
第三章 基本觀念 電腦繪圖與動畫 (Computer Graphics & Animation) Object Data Image
This Is English 3 双向视频文稿.
数据库内容及检索功能 – 如何利用这些资源帮助科技论文的写作与发表 钟似璇 (Sixuan Zhong s.
陳明璋 一個引導注意力為導向的數位內容設計及展演環境 Activate Mind Attention AMA
第4章(1) 空间数据库 —数据库理论基础 北京建筑工程学院 王文宇.
ProQuest- Nursing & Allied Health Source ‎教育訓練
A Study on the Next Generation Automatic Speech Recognition -- Phase 2
第二讲 计算机信息检索概述 主要内容: 一 信息检索的基本概念 二 电子资源的概念与类型 三 计算机信息检索系统 四 计算机检索技术.
Decision Support System (靜宜資管楊子青)
服務於中國研究的網絡基礎設施 A Cyberinfrastructure for Historical China Studies
第三章 基本觀念 電腦繪圖與動畫 (Computer Graphics & Animation) Object Data Image
基于文本特征的英语阅读策略的研究与实践 桐乡市高级中学 胡娟萍
Microsoft SQL Server 2008 報表服務_設計
推动全球能源变革,以创造清洁、安全、繁荣的低碳未来。
電腦基本概念 張森 高階 適合程度 初學.
資料結構 Data Structures Fall 2006, 95學年第一學期 Instructor : 陳宗正.
SAP R/3架構及前端軟體安裝 Logical View of the R/3 System SAP Frontend 6.2安裝
软件工程 第四章 软件设计 软件过程设计技术与工具.
梁文新 办公室:综合楼108 电 话: 软件工程导论 梁文新 办公室:综合楼108 电 话:
中国科学技术大学计算机系 陈香兰 2013Fall 第七讲 存储器管理 中国科学技术大学计算机系 陈香兰 2013Fall.
虚 拟 仪 器 virtual instrument
檢索與資訊組織 --掌握資訊的贏家 師大圖資所 碩一 陳映后、張榕容.
從 ER 到 Logical Schema ──兼談Schema Integration
汪卫 王轶彤 老逸夫楼602-3 数据库新技术 汪卫 王轶彤 老逸夫楼602-3.
多媒体技术 中南大学信息科学与工程学院 黄东军.
计算机问题求解 – 论题1-5 - 数据与数据结构 2018年10月16日.
李宏毅專題 Track A, B, C 的時間、地點開學前通知
More About Auto-encoder
參考資料: 林秋燕 曾元顯 卜小蝶,Chap. 1、3 Chowdhury,Chap.9
數位家庭中的人機介面研究.
SAP 架構及前端軟體安裝 Logical View of the SAP System SAP Frontend 7.1安裝 SAP登入
以碎形正交基底和時間情境圖為基礎進行之視訊檢索 Video retrieval based on fractal orthogonal bases and temporal graph 阿凡達 研究生:張敏倫 指導教授:蔣依吾博士 國立中山大學資訊工程學系.
陳昭珍 國立臺灣師範大學圖書資訊學研究所副教授
WiFi is a powerful sensing medium
Homework 2 : VSM and Summary
Gaussian Process Ruohua Shi Meeting
適用於數位典藏多媒體內容之 複合式多媒體檢索技術
变化的新环境,变化的图书馆 Changing Landscape, Changing Libraries
Section 1 Basic concepts of web page
When using opening and closing presentation slides, use the masterbrand logo at the correct size and in the right position. This slide meets both needs.
Presentation transcript:

Challenges in Multimedia Information Retrieval & Filtering 薛向阳 xyxue@fudan.edu.cn 复旦大学计算机科学与工程系 上海市智能信息处理重点实验室

Outline Potential Applications, Query Examples & Achievements Basic Concepts & Architectures Key Techniques & Problems 2018/11/22 薛向阳 - 复旦大学计算机科学系

Many Potential Applications Broadcast media selection (e.g. radio channel, TV channel) Cultural services (e.g. history museums, art galleries) Digital libraries (e.g. image catalogue, musical dictionary, bio-medical imaging catalogues, film, video and radio archives) Journalism (e.g. searching speeches of a certain politician using his name, his voice or his face) Multimedia directory services (e.g. yellow pages, Tourist information) …… 2018/11/22 薛向阳 - 复旦大学计算机科学系

Video Query Examples(TREC) a specific person I want all the information you have on Ronald Reagan a specific thing I'm interested in any material on Hoover Dam. I'm looking for a picture of the OGO satellite 2018/11/22 薛向阳 - 复旦大学计算机科学系

Informedia – CMU Establishment of large video libraries as a searchable information resource Full content information retrieval in both spoken language and video/image domains Integration of speech, image and natural language understanding for library creation and exploration Fully automated transcriptions generated entirely speech recognition or with closed captions Information summaries at varying detail, both visually and textually 2018/11/22 薛向阳 - 复旦大学计算机科学系

CueVideo – IBM Developing fully automatic means for indexing, hyper-linking and preparation of media material for effective searching and browsing by users Combines several automated indexing,searching and browsing tools Video analysis and summarization Use of speech recognition for spoken media retrieval 2018/11/22 薛向阳 - 复旦大学计算机科学系

Outline Potential Applications, Query Examples & Achievements Basic Concepts & Architectures Key Techniques & Problems 2018/11/22 薛向阳 - 复旦大学计算机科学系

An Instance of IR System Query String Document Corpus Ranked Documents 1. Doc1 2. Doc2 3. Doc3 . 2018/11/22 薛向阳 - 复旦大学计算机科学系

Information Retrieval Information Retrieval (IR) Deals with: Representation (or Modeling) Storage Organization Access of / to Information Items 2018/11/22 薛向阳 - 复旦大学计算机科学系

Architecture:IR offline Multi - Modal User Interface Representation , Modeling Relevance feedback Description (MPEG -7/XML) Multimedia Query Processi ng Database Organizing: Index Structure Searching Ranking 2018/11/22 薛向阳 - 复旦大学计算机科学系

Information Filtering Generally, the goal of an Information Filtering (IF) system is to sort through large volumes of dynamically generated information and present to the user those which are likely to satisfy his or her information requirement 2018/11/22 薛向阳 - 复旦大学计算机科学系

Architecture:IF representation 2018/11/22 薛向阳 - 复旦大学计算机科学系

Applications using MPEG7 2018/11/22 薛向阳 - 复旦大学计算机科学系

Comparison:IR & IF Information Retrieval Information Filtering User Information Needs or Query – Varying Database or Collection – Static Information Filtering User Information Needs or Profile – Static Incoming Data – Varying Common to both how to represent information how to select relevant information 2018/11/22 薛向阳 - 复旦大学计算机科学系

Outline Practical Applications, Query Examples & Achievements Basic Concepts & Architectures Key Techniques & Problems 2018/11/22 薛向阳 - 复旦大学计算机科学系

Digital TV Program Filtering & Searching System DVB-S DVB-C MPEG2 TS Filtering XML Search Engine Database: >2TB User Shot Key-frame Speech Ocr Scene Face Motion … Template 2018/11/22 薛向阳 - 复旦大学计算机科学系

Representation – extract low level features Text Features stop word elimination, stemming, index term selection, thesauri, word cut… Image and Video Features color, texture, shape, motion, … Audio (Speech,Music) Features zero-crossing ratio, short time energy Spectral, Spectral Flux, Spectral Centroid, LPC, MFCC Pitch,Rhythm,Timbre,… Requirements - Good Representation, Fast, Automatic, Robust 2018/11/22 薛向阳 - 复旦大学计算机科学系

Representation – get high level features Structured Video Analysis Video – Scene – Shot – Key frame Summaries at varying detail, both visually and textually Audio & Visual Object Recognition Face,Character,Car,… Word Spotting,Speech Recognition,Speaker,… Problem - Low Precision, Infant, Inevitable Incompleteness in the Representation,… 2018/11/22 薛向阳 - 复旦大学计算机科学系

2018/11/22 薛向阳 - 复旦大学计算机科学系

Retrieval Model Boolean Model Vector Model Probabilistic Model Fuzzy Set Model Neural Network …… 2018/11/22 薛向阳 - 复旦大学计算机科学系

Storage & Organization Standardized Descriptors - MPEG-7 Management of XML Documents Index Structures – For Fast Query Inverted File for Text Index Structure for XML Documents Index Structures for High Dimensional Vector (Visual Features) - Dimensionality Curse 2018/11/22 薛向阳 - 复旦大学计算机科学系

Curse of Dimensionality An Intuitive Explanation Assume n-dimensional points distributed in super-cubic. Selectivity can be computed: When n increasing, P(n) will go down to zero exponentially. In order to find relevant points, searching window should be enlarged! D (0,0) r 2018/11/22 薛向阳 - 复旦大学计算机科学系

Multi-Modal Interface - 1 Input Information Needs Key Word,… Example Image, Example Face, Example Video Clip,… Speech, Humming,… Relevance feedback How to submit user’s query easily and friendly to IR system? How can IR system understand user’s query intention? People are unable to specify that which they don't know There is inevitable uncertainty in the representation or understanding of information problems 2018/11/22 薛向阳 - 复旦大学计算机科学系

Multi-Modal Interface - 2 Output Query Results Enable user to browse full content in hierarchy or web Visualization is important for presentation 2018/11/22 薛向阳 - 复旦大学计算机科学系

How to Compute Relevance? Relevance is a dynamic and idiosyncratic relationship between person and information object Information objects mean many different things to different people (or the same person at different times) There is inherent uncertainty in the relevance relationship 2018/11/22 薛向阳 - 复旦大学计算机科学系

Comparison:IR & DR DR(数据检索) IR(信息检索) Matching Exact Partial, Fuzzy Inference Deduction Induction Model Deterministic Probabilistic Classification Monothetic Polythetic Query Language Artificial Natural Query Specification Complete Incomplete Items Wanted Relevant Error Response Sensitive Insensitive 2018/11/22 薛向阳 - 复旦大学计算机科学系

Conclusion Many types of data without strict structure in huge multimedia database Almost all algorithms of intelligent information processing and recognition (audio & visual) are necessary for better representation Seeking good retrieval model may be key to reduce gap between person and computer Uncertain & chaotic task – unable to be formulated 2018/11/22 薛向阳 - 复旦大学计算机科学系

Q/A? Thank You! 2018/11/22 薛向阳 - 复旦大学计算机科学系