Chap. 6 Inductance, Capacitance, and Mutual Inductance

Slides:



Advertisements
Similar presentations
楊學成 老師 Chapter 1 First-order Differential Equation.
Advertisements

1 Field and Wave Electromagnetics Edited by David K. Cheng.
Chap. 4 Techniques of Circuit Analysis
國立瑞芳高工電機科 92學年度教學觀摩 科目:基本電學I—重疊定理 主講人:李志偉 老師.
Chapter 2 Resistive Circuits (電阻性電路)
第二章(1) 电路基本分析方法 本章内容: 1. 网络图论初步 2. 支路(电流)法 3. 网孔(回路)电流法 4. 节点(改进)电压法.
内容要点: 目的与要求: 电路的作用和组成部分 电路模型 电流和电压的参考方向 电路的基本定律 电源及其等效模型 电路参数的计算 支路电流法
電路學 参考書:電路學 授課教師:林國堅.
3-3 Modeling with Systems of DEs
Short Version : 27. Electromagnetic Induction 短版 : 27.電磁感應
電容 Capacitance Capacitance & capacitors Circuit
普通物理 General Physics 25 - Capacitors and Capacitance
實驗4: 電流天平(課本實驗18) 目的: 測量二載流導線間之磁力
Differential Equations (DE)
D. Halliday, R. Resnick, and J. Walker
第10章 含有耦合电感的电路 重点 1.互感和互感电压 2.有互感电路的计算 3.空心变压器和理想变压器.
Chap. 9 Sinusoidal Steady-State Analysis
普通物理 General Physics 32 - Maxwell's Equations, Models of Magnetism
電路學 (一) 課程簡介 授課老師: 陳 信 助.
Chapter 3 被動元件的描述規則及取用 電阻器 電容器 電感器 互感元件(變壓器).
Ch3. Maxwell’s Equations in Differential Form
附加内容 “AS”用法小结(2).
25. Electric Circuits 電路 Circuits, Symbols, & Electromotive Force 電路,符號,和電動勢 Series & Parallel Resistors 串聯和並聯電阻器 Kirchhoff’s Laws & Multiloop Circuits 基爾霍夫定律和多環路電路.
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
附加内容 “AS”用法小结(1).
Chap. 2 Circuit Elements Contents Objectives
第一講 總說.
Magnetically coupled circuits
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
普通物理 General Physics 30 - Inductance
Chap. 3 Simple Resistive Circuits
Fundamentals of Physics 8/e 29 - Current-Produced Magnetic Field
普通物理 General Physics 29 - Current-Produced Magnetic Field
Short Version : 25. Electric Circuits 短版 : 25. 電路
普通物理 General Physics 31 - Alternating Fields and Current
Fundamentals of Physics 8/e 31 - Alternating Fields and Current
變壓器原理與應用 1.變壓器的原理 2.理想變壓器 3.實際變壓器 4.變壓器之串、並聯特性 課本 頁
What is the danger if your hair suddenly stands up?
第6章 電感與電磁.
Chapter 8 Thermodynamics of High-Speed Gas Flow (第8章 气体和蒸气的流动)
Fundamentals of Physics 8/e 25 - Capacitors and Capacitance
Fundamentals of Physics 8/e 30 - Inductance
實習十五 積體電路穩壓器 穩壓器的基本分類 線性穩壓器(Linear Regulator)
Fundamentals of Physics 8/e 0 – Table of Contents
普通物理 General Physics 21 - Coulomb's Law
23. Electrostatic Energy & Capacitors 靜電能和電容器
Mechanics Exercise Class Ⅰ
實驗4: 電流天平(課本實驗18) 目的: 測量二載流導線間之磁力
實驗 RLC串聯共振.
基本電學II 第9章 基本交流電路 9-1 R、L與C的交流特性 9-2 R-C串聯電路 9-5 R-C並聯電路 9-6 R-L並聯電路
Fundamentals of Physics 8/e 26 - Ohm's Law
諧振電路 Resonant Circuit 2012年4月23日更新.
實習4-1 歐姆定律實驗 實習4-2 電阻串並聯電路實驗 實習4-3 克希荷夫定律實驗 實習4-4 惠斯登電橋實驗 實習4-5 重疊定理實驗
第2章 直流電路 2-1 歐姆定理 2-2 克希荷夫定理 2-3 串、並聯電路的定義及量測 2-4 電功率的定義
電路狀況簡介 ▲圖3-2 基本電路及其各種狀況 開關打開與關閉造成 電路的斷路與通路 將元件兩端的接點用 導線連接會形成短路 絕緣部份破裂,
基本電學I 第三章 串並聯電路 3-1 串聯電路的定義與特性 3-2 克希荷夫電壓定律 3-3 並聯電路定義與特性 3-4 克希荷夫電流定律
中 二 級 電 子 與 電 學 串 聯 電 路 和 並 聯 電 路.
Q & A.
Mechanics Exercise Class Ⅱ
第6章 電晶體放大電路實驗 6-1 小訊號放大電路 6-2 小訊號等效電路模型 6-3 共射極放大電路實驗 6-4 共集極放大電路實驗
动词不定式(6).
Chapter 4 Sensor interface circuits Prof. Dehan Luo
定语从句(2).
受控電源.
電磁感應 Induction 1831 法拉第 Faraday.
句子成分的省略(3).
Lecture #10 State space approach.
Principle and application of optical information technology
The Hindenburg disaster
Presentation transcript:

Chap. 6 Inductance, Capacitance, and Mutual Inductance 2018/11/24 Chap. 6 Inductance, Capacitance, and Mutual Inductance Contents 6.1 The Inductor 6.2 The Capacitor 6.3 Series-Parallel Combinations of Inductance and Capacitance 6.4 Mutual Inductance 6.5 A Closer Look at Mutual Inductance Objectives 認識並能使用電感(容)器的電壓、電流、功率與能量方程式。 能了解定電流流經電感器(定電壓加在電容器)的行為方式和電流(電壓)必須維持連續的要求。 能將具有初始條件之串聯和並聯電感(容)器,結合成具初始條件的單一等效電感(容)器。 了解互感的基本觀念,並能對一個包含磁耦線圈的電路以黑點標示慣用法寫出它的網目──電流方程式。

6.1 The Inductor Inductor v -i Equation 電感器的兩端電壓與流經電感器的電流變化率成正比。 Differential Form 電感器的兩端電壓與流經電感器的電流變化率成正比。 如果流經一理想電感器的電流為定值時,則跨於電感器 上的電壓為零。 電感器中的電流無法瞬間改變(即需維持連續)。 when someone opens the switch on an inductive circuit in an actual system, the current initially continues to flow in the air across the switch, a phenomenon called arcing. The arc across the switch prevents the current from dropping to zero instantaneously.

a) Sketch the current waveform. 2018/11/24 EX 6.1 Determining the Voltage, Given the Current, at the Terminals of an Inductor a) Sketch the current waveform. b) At what instant of time is the current maximum? c) Express the voltage across the terminals of the 100 mH inductor as a function of time.? 3 3

EX 6.1 Contd. d) Sketch the voltage waveform. e) Are the voltage and the current at a maximum at the same time? No; the voltage is proportional to di/dt , not i . f) At what instant of time does the voltage change polarity? At 0.2 s, which corresponds to the moment when di/dt is passing through zero and changing sign. g) Is there ever an instantaneous change in voltage across the inductor? If so, at what time? Yes, at t = 0. Note that the voltage can change instantaneously across the terminals of an inductor.

Current in an Inductor in Terms of the Voltage Across the Inductor 2018/11/24 Current in an Inductor in Terms of the Voltage Across the Inductor Differential Form 初始電流 Integral Form Inductor i - v Equation when to = 0 5 5

a) Sketch the voltage as a function of time. 2018/11/24 EX 6.2 Determining the Current, Given the Voltage, at the Terminals of an Inductor a) Sketch the voltage as a function of time. b) Find and sketch the inductor current as a function of time. 6 6

Power and Energy in the Inductor 2018/11/24 Power and Energy in the Inductor Or, 7 7

2018/11/24 EX 6.3 Determining the Current, Voltage, Power, and Energy for an Inductor 27.07 mJ An increasing energy curve indicates that energy is being stored. Thus energy is being stored in the time interval 0 to 0.2 s. Note that this corresponds to the interval when p > 0. 8 8

6.2 The Capacitor Capacitor i - v Equation Capacitor v -i Equation Differential Form 電容器的電流與電容器兩端電壓變化率成正比。 如果橫跨在電容器兩端的電壓為定值時,則電容器之電流為零。 電容器的兩端電壓無法瞬間改變(即需維持連續)。 Capacitor v -i Equation Integral Form CAPACITOR POWER EQUATION Or, CAPACITOR ENERGY EQUATION 9

2018/11/24 EX 6.4 Determining the Current, Voltage, Power, and Energy for a Capacitor = 0.6F a) Derive the expressions for the capacitor current, power, and energy. b) Sketch the voltage, current, power, and energy as functions of time. 10 10

EX 6.4 Contd. c) Specify the interval of time when energy is being stored in the capacitor. Energy is being stored in the capacitor whenever the power is positive. Hence energy is being stored in the interval 0–1 s. d) Specify the interval of time when energy is being delivered by the capacitor. Energy is being delivered by the capacitor whenever the power is negative. Thus energy is being delivered for all t>1 s.

6.3 Series-Parallel Combinations of Inductance and Capacitance Combining Inductors in Series KVL 12

Combining Inductors in Parallel KCL Equivalent Inductance & Initial Current

Combining Capacitors in Series + KVL Equivalent Capacitance & Initial Voltage 14

Combining Capacitors in Parallel + KCL Equivalent Capacitance 15

6.4 Mutual Inductance 自感(Self-Inductance): L1 and L2 在同一電感器電路中,電壓對應時變電流之參數。 互感(Mutual-Inductance) : M 在以磁場相交連的二個電感器電路中,第二個電路感應 的電壓對應第一個電路的時變電流之參數。 For the left coil, Self-induced voltage: Mutually induced voltage: What about the polarities? 16

Dot Convention 互感電壓之 極性判定 2018/11/24 Dot Convention Passive sign convention: the self-induced voltage is a voltage drop in the direction of the current producing the voltage. 當一電流的參考方向為「流入」線圈黑點端時,在另一線圈所感應到的電壓,以黑點端代表參考極性為「正」。 當一電流的參考方向為「流出」線圈黑點端時,在另一線圈所感應到的電壓,以黑點端代表參考極性為「負」。 互感電壓之 極性判定 17 17

The Procedure for Determining Dot Markings 決定黑點的步驟: 任意選取線圈的一個端點並標 上黑點(如圖D 端)。 2) 指定電流方向為流入黑點端並標示為iD。 3) 依右手定則決定由iD 所建立的磁通方向並標示為D。 4) 從另一個線圈中任意選取一個端點,並指定測試電流iA 流入此端點(如圖A端)。 5) 依右手定則決定由iA 所建立的磁通方向並標示為A 。 Figure: 06-21 6) 比較D 和A 兩個磁通方向,若一致則在第二個線圈的測試電流iA 流入處標上黑點(磁通方向相同,黑點標示在A端)。如果磁通方向不同,則在第二個線圈的測試電流iA 流出處B端標上黑點。 18

Experimental Setup for Determining Polarity Markings 陰影區域無法直接觀察 R用以限制直流電壓源供給之電流大小 Figure: 06-21 將連接至直流電壓源正極端之線圈端點標示黑點。 當開關閉合時,福特計指針瞬間增加刻度,則連接至伏特計正極端之線圈端點標示黑點。 若福特計指針瞬間減少刻度,則將連接至伏特計負極端之線圈端點標示黑點。 19

2018/11/24 EX 6.6 Finding Mesh-Current Equations for a Circuit with Magnetically Coupled Coils i1 mesh: i2 mesh: 20 20

6.5 A Closer Look at Mutual Inductance A Review of Self-Inductance Coil current 法拉第定律(Faraday’s Law )  :磁通鏈(Flux Linkage; weber-turns)  :磁通(Magnetic Flux; Wb) P:Permeance Assume that the core material, the space containing the flux, is nonmagnetic. The permeance is constant. a linear relationship between  and i . 當i增加時,di/dt 為正,電壓v 亦為正,能量被用來建立磁場,能量儲存率(功率)為vi。 當磁場開始減弱時,di/dt為負,感應電壓v的極性變成抵抗磁場的變化,線圈磁場的減弱表示能量還回給電路。 21

The Concept of Mutual Inductance The flux 1 produced by the current i1 can be divided into two components, labeled 11 (linking only the N1 turns) and 21 (linking the N2 turns and the N1 turns). Also, Mutual-inductance due to current i1 M21 Self-inductance 22

The Concept of Mutual Inductance (Contd.) Self-inductance Also, M12 Mutual-inductance due to current i2 For nonmagnetic materials, the permeances P12 and P21 are equal. 23

Mutual Inductance in terms of Self-Inductance OR k :coefficient of coupling 24

Energy Calculation 25