Introduction to Vision Chapter 3 Introduction to Vision
視覺由眼睛開始 光線角膜(cornea)瞳孔(pupil)水晶體(lens) 網膜(retina) 桿細胞(rods)& 錐細胞(cones) 視神經(optic nerve)
眼球結構介紹http://webvision.med.utah.edu/
鞏膜(Sclera) Choroid 角膜 富含血管(提供營養) 色素組織 – 吸收多餘光線,降低眼球內反射 前方形成虹膜 前方的鞏膜成透明狀 Choroid 富含血管(提供營養) 色素組織 – 吸收多餘光線,降低眼球內反射 前方形成虹膜 收縮程度決定瞳孔大小,調整進入眼球光線 紅眼現象與防紅眼裝置 瞳孔大小與arousal(興趣)有關
由連結的睫狀肌(cilliary muscle)控制屈度 網膜 水晶體 二個室(chambers) Aqueous humor renewed Vitreous humor Not renewed 由連結的睫狀肌(cilliary muscle)控制屈度 網膜
光是視覺的刺激 波長(wavelength) 色彩 vs. 波長 可見光波長範圍 400-700 nm (1 nm=10-9 m) 電磁波頻譜的1/70 例外,如響尾蛇, detects infrared
眼球協助光線聚焦於網膜 角膜(cornea) 水晶體(lens) 聚焦20%由水晶體完成 調節(accommodation) 聚焦80%由角膜完成 但無法改變形狀 水晶體(lens) 聚焦20%由水晶體完成 調節(accommodation) 改變形狀 藉由晶體曲度的變化(變厚或變薄)來使不同距離的物體聚焦於視網膜上 若調節產生問題…….. (6 m)
Presbyopia (老花眼) 隨著年齡增加,near point (水晶體無法調節聚焦的最近距離)增加的狀況 水晶體變得難以改變形狀
Myopia (近 視) 遠的看不清楚 晶體和角膜異常的折射或是眼球過長,造成聚焦於網膜之前
光線可以正確聚焦於網膜的距離 凹透鏡矯正,使光線如同由far point投射出
Hyperopia (遠 視) 晶體彈性不足或眼球距離太短,造成聚焦於網膜之後 對於遠距物體的調節比近距離物體容易,所以遠視者往往對近的物體看不清楚
眼睛的其他功能 I can see you, so be careful with what you do!
傳達情感 瞳孔 眼淚 http://www.spike.com/video/recruit-youre/2459203 CIA追緝令 (The recruit)
光線(影像)轉換為電訊號 Focusing the image clearly onto the retina is the initial step in the process of vision But it is important to realize that although a sharp image on the retina is essential for clear vision, we do not see the image on the retina. Vision occurs not in the retina, but in the brain, and before the brain can create vision, the light on the retina must be transformed into electricity. (p47)
光受器(photoreceptors) 桿細胞(rods)& 錐細胞(cones) 進行轉導(transduction) 發生在outer segments 的色素層 色素分子 Opsin Retinal Sensitive to light
視覺轉導(visual transduction) Isomerization retinal吸收光子而改變形狀
1 photon is sufficient to isomerize one visual pigment molecule How many visual pigment molecules are needed for one to see? Hecht’s psychophysical experiment 偵測光線的絕對閼約為100個光子
一個光子就足以activate一個桿細胞
一個色素分子的isomerization 觸動 enzyme cascade
感光細胞與視覺 分佈 錐細胞6百萬個,約有1/100落在fovea,fovea完全沒有桿細胞 桿細胞一億二千萬個,均落在網膜周邊—周邊的桿/錐細胞比是20/1
盲點(blind spot)-- 神經節細胞離開眼球之處,沒有感光細胞 視神經(optic nerve)
左眼凝視+,閉右眼,前後移動到左邊圓點消失 為何我們平常不覺得有盲點呢? See Ramachandran demo (p52, VL #3)
使眼睛在黑暗中的sensitivity增加 暗適應(dark adaptation) 使眼睛在黑暗中的sensitivity增加 敏感度的增加分為兩階段
測量程序 光適應敏感度(light-adapted sensitivity) 關掉光源 調整法-調整強度至約略可見 連續測量敏感度 暗適應曲線 可刺激rod & cones
測量程序 為何桿細胞與錐細胞的的按適應速度不同? 錐細胞適應曲線 桿細胞適應曲線 如何只針對錐細胞做測量? 如何只針對桿細胞做測量? 用rod monochromat(沒有cones) 為何桿細胞與錐細胞的的按適應速度不同?
色素分子的再生歷程(visual pigment regeneration) 在光環境下色素分子分解(放出電訊號),在暗環境下色素分子再生(促使敏感度提高) pigment bleaching: 色素分子吸收光子後,retinal改變形狀並與opsin 分離而造成retina顏色變淺
pigment regeneration: opsin與retinal在黑暗中重新結合 錐細胞需時6 min,桿細胞需時 30 min ---符合暗適應的行為時程
Figure 2. 24 Three dark adaptation curves Figure 2.24 Three dark adaptation curves. The red line is the two-stage dark adaptation curve, with an initial cone branch and a later rod branch. The green line is the cone adaptation curve. The black line is the rod adaptation curve. Note that the downward movement of these curves represents an increase in sensitivity. The curves actually begin at the points indicating “light-adapted sensitivity,” but there is a slight delay between the time the lights are turned off and when measurement of the curves begins. (Partial data [pure rod curve] from “Rhodopsin Measurement and Dark Adaptation in a Subject Deficient in cone Vision,” by W. A. H. Ruston, 1961, Journal of Psychology, 156, 193-205. Copyright © 1961 by the Psychological Society, Cambridge University Press.) back
錐狀細胞及桿狀細胞的光敏感度曲線(spectral sensitivity curve) Figure 2.26 錐狀細胞及桿狀細胞的光敏感度曲線(spectral sensitivity curve) 閾值及敏感度 sensitivity=1/threshold rod is most sensitive to light of 500 nm while cone is most sensitive to 560 nm
Purkinje shift: 暗適應進行時(如黃昏),不同波長光線的敏感度會因為由錐細胞系統轉為桿細胞系統而有變化,造成知覺亮度的改變,例如,紅花與綠葉,前者變得比較不明豔,但後者變得比較亮
三種cone pigments綜合產生cone spectral sensitivity curve 短波長色素 - 419 nm(最少) 中波長色素 – 531 nm 長波長色素 – 558 nm 一種rod pigment
Honeybee absorption spectrum Absorbs ultraviolet light – strongly reflected by flowers
網膜上神經元匯聚(convergence)的狀況 網膜上有五種神經元 垂直連結 桿狀、錐狀細胞→兩極細胞(bipolar cell)→神經節細胞(ganglion cell) 水平連結 水平細胞(horizontal cell) 無軸突細胞(amacrine cell)
Figure 3.1(a)
光線先經過其他網膜的神經元,才抵達桿狀及錐狀細胞 透明組織 中央錐細胞密度高處較薄 怎麼看得清楚呢? 透明組織 中央錐細胞密度高處較薄
雖然受器細胞有一億二千六百萬個,神經節細胞只有一百萬個,convergence ratio=126:1 Fovea的錐細胞多半與神經節細胞有1-1連結提高錐細胞敏銳度
神經處理如何達成知覺的sensitivity與acuity? 匯聚(convergence)或多對一連結增加訊號強度,使敏感度提升
Acuity --- 一對一連結增加訊號解析度,使敏銳度提升
側抑制(lateral inhibition) 用Limulus作實驗動物 每個小眼連結一個受器(刺激一個小眼引發一個受器反應) 鄰近受器的激發產生抑制作用
側抑制影響亮度知覺—Hermann Grid
Figure 3.6, page 50 Hermann grid Copyright © 2002 Wadsworth Group. Wadsworth is an imprint of the Wadsworth Group, a division of Thomson Learning
與A相關的兩極細胞受到較多側抑制 與B相關的兩極細胞受到較少側抑制 Figure 3.7, page 51 Hermann grid可以用側抑制解釋 與A相關的兩極細胞受到較多側抑制 Copyright © 2002 Wadsworth Group. Wadsworth is an imprint of the Wadsworth Group, a division of Thomson Learning 與B相關的兩極細胞受到較少側抑制
與A相關的兩極細胞受到較多側抑制 與D相關的兩極細胞受到較少側抑制
側抑制影響亮度知覺—Mach Bands Figure 3.8, page 52 Match bands
Figure 3.10 Circuit to explain the Mach band effect based on lateral inhibition. The circuit works like the one for the Hermann grid in Figure 3.6, with each bipolar cell sending inhibition to its neighbors. If we know the initial output of each receptor and the amount of lateral inhibition, we can calculate the final output of the receptors. (See text for a description of the calculation.)
Figure 3.11 A plot showing the final receptor output calculated for the circuit of figure 3.10. The bump at B and the dip at C correspond to the light and dark Mach bands, respectively.
側抑制影響亮度知覺 -- simultaneous contrast
Figure 3.13 How lateral inhibition has been used to explain the simultaneous contrast effect.
Figure 3.14 The Benary cross. 這些無法由側抑制解釋 Figure 3.15 White’s illusion. (From Perception, 1981, 10, p. 215-230, fig 1a, p. 216. Reprinted with permission from Pion, Ltd., London.)
Principle of belongingness