正交变换与正交矩阵 戴立辉 林大华 林孔容 (闽江学院数学系,福建 福州 350108 ).

Slides:



Advertisements
Similar presentations
常系数线性微分方程组 §5.3 常系数线性方程组. 常系数线性微分方程组 一阶常系数线性微分方程组 : 本节主要讨论 (5.33) 的基解矩阵的求法.
Advertisements

实数与代数式是初中数学中重要的基础知识, 是中考的必考内容.这部分知识散布于多个章节之中, 知识点琐碎,但概念性强,在中考试卷中多以填空题、 选择题、化简、探索或求值的形式出现.在复习中, 一定要加强对各个概念、性质和公式的辨析和理 解.注重让学生在实际背景中理解基本的数量关系和 变化规律,注重使学生经历从实际问题中建立数学模.
线 性 空 间 线性空间的定义 线性空间 的子空间 小结. 线性空间是线性代数最基本的概念之一,也是 一个抽象的概念,它是向量空间概念 线性空间是线性代数最基本的概念之一,也是 一个抽象的概念,它是向量空间概念的推广. 线性空间是为了解决实际问题而引入的,它是 某一类事物从量的方面的一个抽象,即把实际问题看作向量空间,进而通过研究向量空间来解决实际问题.
說 劍 《莊子‧雜篇》─ 第 一 組 賴泊錞 謝孟儒 張維真 羅苡芸
第四章:长期股权投资 长期股权投资效果 1、控制:50%以上 有权决定对方财务和经营.
§1. 预备知识:向量的内积 ★向量的内积的概念 ★向量的长度 ★向量的正交性 ★向量空间的正交规范基的概念 ★向量组的正交规范化
线性代数 第六章 矩阵的对角化 6.3 内积和正交矩阵.
向量空间与线性变换 在数学大厦中的重要地位
第18讲 欧氏空间 主要内容: 1.向量的内积 2. 欧氏空间的定义 3.正交矩阵.
第九章 欧几里得空间 学时:18学时。 教学手段: 基本内容和教学目的: 重点和难点:
第五章 二次型 §5.1 二次型的矩阵表示 §5.2 标准形 §5.3 唯一性 §5.4 正定二次型 章小结与习题.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
第3节 二次型与二次型的化简 一、二次型的定义 二、二次型的化简(矩阵的合同) 下页.
第八章 二次型 Quadratic Form 厦门大学数学科学学院 网址:
福建省《高等代数》与《线性代数》课程建设第八次研讨会
营改增税负分析 之 税负分析测算表 青岛市国税局货物和劳务税处 二○一六年五月 1.
9 有理数的乘方.
不会宽容人的人, 是不配受到别人的宽容的。 贝尔奈.
复习回顾 a a×a a×a×a a a×a×a= a×a= 1.如图,边长为a厘米的正方形的面积 为 平方厘米。
2014年初中生物学业水平抽测分析.
第三章 函数逼近 — 最佳平方逼近.
第五章 矩阵与行列式 §5.4 逆矩阵 §5.5 矩阵的初等变换.
§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学
第五章 二次型 本章将向量空间具体化,给出欧氏空间的概念,然后讨论二次型化为标准形的问题。为此,
第四章 时间序列的分析 本章教学目的:①了解从数量方面研究社会经济现象发展变化过程和发展趋势是统计分析的一种重要方法;②掌握时间数列编制的基本要求;③理解和掌握水平速度两方面指标的计算及运用④理解和掌握长期趋势分析和预测的方法。 本章教学重点:现象发展的水平指标和速度指标。 本章教学难点:现象变动的趋势分析。
从双基到四基,从两能到四能 ——学习《义务教育数学课程标准(2011版)》
一、液压与气压传动的控制元件分类 1、按用途分类 根据控制元件在系统中的作用,可分为下几类: 方向控制阀 压力控制阀 3) 流量控制阀
第1节 光的干涉 (第2课时).
二次型.
第4章 种群和群落 第3节 群落的结构 自主学习案   合作探究案 课后练习案. 第4章 种群和群落 第3节 群落的结构 自主学习案   合作探究案 课后练习案.
苏教版小学数学六年级(下册) 认识正比例的量 执教者:朱勤.
第三讲 矩阵特征值计算及其应用 — 正交变换与QR方法.
第十三章 收入和利润.
第二章 矩阵(matrix) 第8次课.
如何寫工程計畫書 臺北市童軍會考驗委員會 高級考驗營 版.
語法與修辭 骨&肉 老師:歐秀慧.
!!! 请记住:矩阵是否等价只须看矩阵的秩是否相同。
计算机数学基础 主讲老师: 邓辉文.
第四章 矩阵 §1 矩阵概念的一些 背景 §6 初等矩阵 §4 矩阵的逆 §5 矩阵的分块 §2 矩阵的运算 §3 矩阵乘积的行列 式与秩
第四章 向量组的线性相关性.
线性代数 第二章 矩阵 §1 矩阵的定义 定义:m×n个数排成的数表 3) 零矩阵: 4) n阶方阵:An=[aij]n×n
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
特 征 值 与 特 征 向 量 一、特征值与特征向量的概念 二、特征值和特征向量的性质.
复习.
第十章 双线性型 Bilinear Form 厦门大学数学科学学院 网址: gdjpkc.xmu.edu.cn
第三章 线性空间 Linear Space.
大綱:整數的加法 整數的減法 蘇奕君 台灣數位學習科技股份有限公司
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§8.3 不变因子 一、行列式因子 二、不变因子.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
4) 若A可逆,则 也可逆, 证明: 所以.
第五章 相似矩阵及二次型.
2.2矩阵的代数运算.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
A经有限次初等变换化为B,称A与B等价,记作A→B.
§2 方阵的特征值与特征向量.
6.2 线性变换的运算 授课题目:6.2 线性变换的运算 授课时数:2学时 教学目标:掌握线性变换的三种运算及
在发明中学习 线性代数概念引入 之四: 矩阵运算 李尚志 中国科学技术大学.
主讲教师 欧阳丹彤 吉林大学计算机科学与技术学院
定义5 把矩阵 A 的行换成同序数的列得到的矩阵,
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
§12-5 同方向同频率两个简谐振动的合成 一. 同方向同频率的简谐振动的合成 1. 分振动 : 2. 合振动 : 解析法
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
 遺 傳    習題.
高等代数课件 陇南师范高等专科学校数学系 2008年制作.
§1 向量的内积、长度及正交性 1. 内积的定义及性质 2. 向量的长度及性质 3. 正交向量组的定义及求解 4. 正交矩阵与正交变换.
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
第七章 线性空间与线性变换 §1 线性空间定义与性质
Presentation transcript:

正交变换与正交矩阵 戴立辉 林大华 林孔容 (闽江学院数学系,福建 福州 350108 )

摘 要 介绍正交变换的概念,研究线性变换为正交变换的等价条件;从矩阵理论的角度,探讨正交矩阵的常用性质. 关键词 正交变换;正交矩阵;等价条件;性质 一、正交变换 定义1.1 设A是欧氏空间V的一个线性变换,若A保持向量的内积不变,即对于任意的,V都有(A,A) = (,),则称A为V的正交变换.

二、等价条件 定理2.1 设A是n维欧氏空间V的一个线性变换,则下列命题等价: 1)A是正交变换; 2)A保持向量的长度不变,即对于V,|A|=||; 3)A把V的标准正交基变为V的标准正交基; 4)A在标准正交基下的矩阵是正交矩阵. 证:1)2)对于V,由(A,A)=(,), 即得: |A|=||

(A(i+j),A(i+j))=(i+j, i+j) 2)3)设1,2,…,n是V的任一标准正交基,记i+j=V. 由|A|=||或(A,A)=(,)得 (A(i+j),A(i+j))=(i+j, i+j) 而 (A(i+j),A(i+j)) =(Ai,Ai)+2(Ai,Aj)+(Aj,j) =(i,i)+2(i,j)+(j,j) (i+j, i+j)=(i,i)+2(i,j)+(j,j) 故 A1,A2,…,An是V的一组标准正交基.

A(1,2,…,n)=(A1,A2,…,An) 3)4)设1,2,…,n是V的标准正交基, A(1,2,…,n)=(A1,A2,…,An) = (1,2,…,n)A 由3), A1,A2,…,An是V的标准正交基,故A可看作是由标准正交基1,2,…,n到标准正交基A1,A2,…,An的过渡矩阵,A是正交矩阵.

4)1)设1,2,…,n是V的标准正交基,且A在此基下的矩阵A为正交矩阵. 由(A1,A2,…,An)= (1,2,…,n)A,知A1,A2,…,An也是V的标准正交基, 设=x11+x22+…+xnn,=y11+y22+…+ynn,则 A=x1A1+x2A2+…+xnAn A=y1A1+y2A2+…+ynAn (A,A)= x1y1+x2y2+…+xnyn (,)= x1y1+x2y2+…+xnyn 所以 (A,A)=(,),故A为正交变换.

三、正交矩阵 正交矩阵有以下几种等价定义. 定义3.1 A为n阶实矩阵,若ATA=E,则称A为正交矩阵. 定义3.2 A为n阶实矩阵,若AAT=E,则称A为正交矩阵. 定义3.3 A为n阶实矩阵,若AT=A-1,则称A为正交矩阵. 定义3.4 A为n阶实矩阵,若A的n个行(列)向量是两两正交的单位向量,则称A为正交矩阵.

1)|A|=1;2)A可逆,其逆A-1也是正交矩阵; 3)AT,A*也是正交矩阵. 证:1)由AAT=E,可知|A|2=1,或者|A|=1. 对正交矩阵A,当|A|=1时,我们称A为第一类正交矩阵;当|A|=-1时,则称A为第二类正交矩阵. 2)由AAT=E,可知A可逆,且A-1=AT,又 (A-1)T=(AT)T=A=(A-1)-1=E. 故A-1是正交矩阵. 3)由2)知AT=A-1,AT是正交矩阵. 而A*=|A|A-1= A-1,有 (A*)T=(A-1)T=A=(A*)-1, 故A*是正交矩阵.

(AB)T=BTAT=B-1A-1=(AB)-1, 1)AB,Am(m为自然数),ATB,ABT,A-1B,AB-1,A-1BA等都是正交矩阵; 证:1)由AT=A-1,BT=B-1可知 (AB)T=BTAT=B-1A-1=(AB)-1, 所以AB为正交矩阵,从而再由性质1可推知: Am(m为自然数),ATB,ABT,A-1B,AB-1,A-1BA

等均为正交矩阵.

1)设A,B为正交矩阵,且|A|=-|B|,则A+B必不可逆; 2)设为A,B奇数阶正交矩阵,且|A|=|B|,则必A-B不可逆. 性质3.3: 1)设A,B为正交矩阵,且|A|=-|B|,则A+B必不可逆; 2)设为A,B奇数阶正交矩阵,且|A|=|B|,则必A-B不可逆. 证:1)由|A+B|=|BBTA+BATA|=|B||BT+AT||A| =-|B|2|BT+AT|=-|(A+B)T|=-|A+B| 得|A+B|=0,即A+B不可逆. 2)由|A-B|=|BBTA-BATA|=|B||BT-AT||A| =|B|2|BT-AT|=|-(A-B)T|=(-1)n|A-B| 知n为奇数时,|A-B|=-|A-B|,即|A-B|=0, 从而A-B不可逆.

推论3.1 1)设A是第二类正交矩阵,则A+E必不可逆; 2)设A是奇数阶第一类正交矩阵,则A-E必不可逆. 四、正交变换的性质 性质4.1 正交变换的行列式等于+1或者-1.行列式等于+1的正交变换称为旋转,或者称为第一类的;行列式等于-1的正交变换称为第二类的.

(+)=()+(), (k)=k(),kR 证:正交变换A在标准正交基下的矩阵A是正交矩阵,A的行列式等于A的行列式. 所以正交变换的行列式等于+1或者-1. 性质4.2 正交变换是欧氏空间的一个自同构映射. 证:设是V的正交变换, 在任一标准正交基下的矩阵为正交矩阵,它有逆矩阵,故有逆变换,因而是V到V上的双射. 对于任意的,V,由是正交变换知 (+)=()+(), (k)=k(),kR ((),())=(,) 所以是V到V的一个自同构映射. ,

由 ((AB),(AB))=(B,B)=(, ), 性质4.3 正交变换的乘积、正交变换的逆变换还是正交变换. 证:设A,B是V的线性变换,对于, V, 由 ((AB),(AB))=(B,B)=(, ), 及 (A-1, A-1)= (A(A-1), A(A-1) )=(,) 知 AB, A-1都是V的线性变换.

参考文献 [1]北京大学数学系几何与代数教研室前代数小组.高等代数(第三版)[M],北京:高等教育出版社,2003. [2]同济大学应用数学系.线性代数(第四版)[M],北京:高等教育出版社,2003.

谢谢各位老师!