Flexible and Creative Chinese Poetry Generation Using Neural Memory

Slides:



Advertisements
Similar presentations
Chapter 2 Combinatorial Analysis 主講人 : 虞台文. Content Basic Procedure for Probability Calculation Counting – Ordered Samples with Replacement – Ordered.
Advertisements

FREE-TYPE POEM GENERATION QIXIN WANG, TIANYI LUO, DONG WANG, CHAO XING AAAI & IJCAI 2016.
大胆作为 勇于承担  建立安全监管新常态 市安全监管局 林凯军.
Unsupervised feature learning: autoencoders
牙齒共振頻率之臨床探討 論 文 摘 要 論文名稱:牙齒共振頻率之臨床探討 私立台北醫學院口腔復健醫學研究所 研究生姓名:王茂生 畢業時間:八十八學年度第二學期 指導教授:李勝揚 博士 林哲堂 博士 在口腔醫學的臨床診斷上,到目前為止仍缺乏有效的設備或方法可以評估或檢測牙周之邊界狀態。臨床上有關牙周病的檢查及其病變之診斷工具,
2014年11月12日: 日程 中国学生的采访 Model 考试 复习:怎么提高文章水平? 大学面试:六个问题.
专题八 书面表达.
成都市现代制造职业技术学校 强抓职教师资建设 提升教师队伍素质 ——青年教师队伍长成记 主讲人:游 宏.
基于CBI教学理念, 培养跨文化沟通能力外语人才 庄恩平 上海大学  
道路交通管理 授课教师:于远亮.
二維品質模式與麻醉前訪視滿意度 中文摘要 麻醉前訪視,是麻醉醫護人員對病患提供麻醉相關資訊與服務,並建立良好醫病關係的第一次接觸。本研究目的是以Kano‘s 二維品質模式,設計病患滿意度問卷,探討麻醉前訪視內容與病患滿意度之關係,以期分析關鍵品質要素為何,作為提高病患對醫療滿意度之參考。 本研究於台灣北部某醫學中心,通過該院人體試驗委員會審查後進行。對象為婦科排程手術住院病患,其中實驗組共107位病患,在麻醉醫師訪視之前,安排先觀看麻醉流程衛教影片;另外對照組111位病患,則未提供衛教影片。問卷於麻醉醫師
金字塔原理 Pyramid Principle 职场能力差距的本质 海盈丰人力资源出品 HYF HUMAN RESOURCE PRODUCE.
新生学业导航 淮南师范学院2016级新生入学教育之学生学业导航教育.
Homework 2 : VSM and Summary
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
Chaoping Li, Zhejiang University
A Question Answering Approach to Emotion Cause Extraction
深層學習 暑期訓練 (2017).
Homework 4 an innovative design process model TEAM 7
Visualizing and Understanding Neural Machine Translation
-Artificial Neural Network- Adaline & Madaline
PRIMT: A Pick-Revise Framework for Interactive Machine Translation
An Adaptive Cross-Layer Multi-Path Routing Protocol for Urban VANET
Rate and Distortion Optimization for Reversible Data Hiding Using Multiple Histogram Shifting Source: IEEE Transactions On Cybernetics, Vol. 47, No. 2,February.
毕业论文报告 孙悦明
NLP Group, Dept. of CS&T, Tsinghua University
Manifold Learning Kai Yang
Source: IEEE Access, vol. 5, pp , October 2017
Sampling Theory and Some Important Sampling Distributions
生物芯片技术 刘超 李世燕 谢宏林
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
971研究方法課程第九次上課 認識、理解及選擇一項適當的研究策略
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
Formal Pivot to both Language and Intelligence in Science
极致清新·论文答辩 请填写论文副标题或补充内容 答辩学生:代用名 指导老师:代用名.
大学思辨英语教程 精读1:语言与文化 (说课)
Machine Translation for Conversational Texts
基于文本特征的英语阅读策略的研究与实践 桐乡市高级中学 胡娟萍
Version Control System Based DSNs
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
Ericsson Innovation Award 2018 爱立信创新大赛 2018
相關統計觀念復習 Review II.
前向人工神经网络敏感性研究 曾晓勤 河海大学计算机及信息工程学院 2003年10月.
Review and Analysis of the Usage of Degree Adverbs
Learn Question Focus and Dependency Relations from Web Search Results for Question Classification 各位老師大家好,這是我今天要報告的論文題目,…… 那在題目上的括號是因為,前陣子我們有投airs的paper,那有reviewer對model的名稱產生意見.
Unit 7 Lesson 20 九中分校 刘秀芬.
Representation Learning of Knowledge Graphs with Hierarchical Types
01 FISHBONE DIAGRAM TARGET PART ONE PART TWO PART THREE PART FOUR
The viewpoint (culture) [观点(文化)]
An Efficient MSB Prediction-based Method for High-capacity Reversible Data Hiding in Encrypted Images 基于有效MSB预测的加密图像大容量可逆数据隐藏方法。 本文目的: 做到既有较高的藏量(1bpp),
An organizational learning approach to information systems development
Q & A.
冀教版 九年级 Lesson 20: Say It in Five.
Nucleon EM form factors in a quark-gluon core model
李宏毅專題 Track A, B, C 的時間、地點開學前通知
Efficient Query Relaxation for Complex Relationship Search on Graph Data 李舒馨
Introduction of this course
(二)盲信号分离.
More About Auto-encoder
钱炘祺 一种面向实体浏览中属性融合的人机交互的设计与实现 Designing Human-Computer Interaction of Property Consolidation for Entity Browsing 钱炘祺
Speaker : YI-CHENG HUNG
何正斌 博士 國立屏東科技大學工業管理研究所 教授
Chapter 9 Validation Prof. Dehan Luo
Class imbalance in Classification
之前都是分类的蒸馏很简单。然后从分类到分割也是一样,下一篇是检测的蒸馏
WiFi is a powerful sensing medium
Homework 2 : VSM and Summary
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

Flexible and Creative Chinese Poetry Generation Using Neural Memory Jiyuan Zhang NLP Group, CSLT, Tsinghua University

Outline Introduction The memory-augmented neural model(The MNM) The analysis of memory mechanism Evaluation & Experiments Conclusions & Future work

Introduction A 5-char quatrain: Rhythm & tone

Introduction Statistical or rule-based model: Neural model: For example, n-gram, formula is as follows: P(T)=P(W1W2W3Wn)=P(W1)P(W2|W1)P(W3|W1W2)…P(Wn|W1W2…Wn-1) Neural model: Compared to previous approaches(e.g., rule-based or SM), the neural model approach tends to generate more fluent poems.

Introduction Neural model is firstly used to generate Chinese poetry in the paper ‘Xingxing Zhang and Mirella Lapata. 2014. Chinese poetry generation with recurrent neural networks’.

Introduction Attention-based seq2seq model is found to be more suitable for generating Chinese poetry in the paper ‘Qixin Wang, Tianyi Luo, and Dong Wang. 2016a. Can machine generate traditional Chinese poetry? a feigenbaum test’.

Introduction A problem about neural model: Neural model is very good at learning abstract rules, leading to a lack of innovation in poem generation. For example, 竹 春雨 竹林小立松风雨 雨声细雪春初月 一点青山不可怜 一点青山不可怜 我爱清溪无数曲 天上晴阴无数事 绿阴未到水边船 东风送客又经年

Introduction A solution to the shortage of neural model: A memory-augmented neural network that we proposes can partially solve the problem about innovation. The idea was inspired by poem compos- etion process of human poet.

Introduction The aims of the memory: Linguistic accordance and aesthetic innovation. Generating poems with different styles.

Outline Introduction The memory-augmented neural model(The MNM) The analysis of memory mechanism Evaluation & Experiments Conclusions & Future work

The memory-augmented neural model The function of the memory not trained, just works in prediction constrains and modifies the behavior of the neural model, resulting in generations with desired properties. understand the memory-augmented neural model reasoning and knowledge. rule-based inference and instance-based retrieval. continuous and parameter-shared and discrete and contains no parameter sharing.

Neural model part of MNM first proposed in 2014 (Bahdanau, D., Cho, K., & Bengio, Y. 2014) Encoder-decoder architecture Encoder: a bi-directional RNN ℎ 1 , ℎ 2 , … Decoder: a RNN 𝑠 1 , 𝑠 2 , … -> 𝑦 1 , 𝑦 2 , … Attention mechanism: a relevance factor ɑi that measures the similarity between st-1 and hi . The output of the neural model:

The memory part of The MNM Memory consists of 3 modules Source memory: mi (s) = fd (xj-1 , sj-1, 0) Target memory: mi (g) = xj Weights: the memory elements are selected according to their fit to the present decoder status st , choose cosine distance to measure the fitting degree. The output of memory part:

The output of MNM The output of the neural model and the memory : The β is not better than the manually-selected one.

Outline Introduction The memory-augmented neural model(The MNM) The analysis of memory mechanism Evaluation & Experiments Conclusions & Future work

The analysis of memory mechanism Three scenarios where adding a memory may contribute: Promote innovation in an one-iteration neural model Regularize the innovation in an over-fitted neural model generation of poems of different styles Energy surface of Neural model Energy surface of memory Energy surface of combined model

Outline Introduction The memory-augmented neural model(The MNM) The analysis of memory mechanism Evaluation & Experiments Conclusions & Future work

Evaluation metrics five metrics to evaluate the generation: Compliance: if regulations on tones and rhymes are satisfied; Fluency: if the sentences read fluently and convey reasonable meaning; Theme consistency: if the entire poem adheres to a single theme; Aesthetic innovation: if the quatrain stimulates any aesthetic feeling with elaborate innovation; Scenario consistency: if the scenario remains consistent.

Evaluation process In innovation experiment: Judging which of the two poems was better in terms of the five metrics including Compliance, Fluency, Theme consistency, Aesthetic innovation, Scenario consistency. In style-transfer experiment: Given a poem, select that which style it belongs to and mark it in four metrics including Compliance, Fluency, Aesthetic innovation, Scenario consistency.

Experiments (innovation) Dataset: 500 quatrains randomly selected from our training corpus Two configuration: one is with a one-iteration model (C1) and the other is with an overfitted model (Cꝏ).

Examples in the innovation experiment 竹 竹 竹林小立松风雨 竹篱小径清风雨 一点青山不可怜 一点溪桥绿水间 我爱清溪无数曲 山下松花无数叶 绿阴未到水边船 斜阳旧日绕墙湾

Experiments (style-transfer) Dataset: contains 300 quatrains with clear styles, including 100 pastoral, 100 battlefield and 100 romantic quatrains. General topic, e.g., ‘自’. style-bias topic, e.g., ‘溪居’. 73% cases the style can be successfully transferred.

Examples in the style-transfer experiment General topic: 自 自从此意无心物 一日东风不可怜 莫道人间何所在 我今已有亦相传 自 自 自 一山不自无边马 花香粉脸胭脂染 一花自有春风雨 塞外青城万里风 帘影鸳鸯绿嫩妆 秧麦畦蔬菜叶香 莫道东西烽火戍 翠袖红蕖春色冷 野水田家无数亩 蓟门未入汉家翁 柳梢褪叶暗烟芳 老翁不见绿杨塘

Examples in the style-transfer experiment Style-bias topic: 溪居 溪居 溪居 溪居小住山家舍 溪桥绿水烟鬟翠 山居水里青溪雪 不是清泉水里间 帘幕妆栊细雨花 不见江南戍北风 我爱幽人知此地 竹绕幽窗春梦冷 野草萧条烽火雨 只应为客问谁闲 杏梢嫩叶柳塘沙 一年远客望西翁

Outline Introduction The memory-augmented neural model(The MNM) The analysis of memory mechanism Evaluation & Experiments Conclusions & Future work

Conclusions The memory can encourage creative generation for regularly-trained models. The memory can encourage rule-compliance for overfitted models. The memory can modify the style of the generated poems in a flexible way.

Future work Investigating a better memory selection scheme Other regularization methods (e.g., norm or drop out) may alleviate the over-fitting problem.

Thanks! Q&A