A high payload data hiding scheme based on modified AMBTC technique

Slides:



Advertisements
Similar presentations
多維度結構光線圖案應用在三維介面掃描 Multi-Dimension Structural Light Patterns for 3D Surface Scanning 指導教授:鄭文凱 學生:葉宇欽.
Advertisements

What is Information Hiding
Outline Image Compression Image Understanding
道路交通管理 授课教师:于远亮.
院長:鄭錦聰 教授 各系負責老師 光電系:姬梁文老師 電機系:張凱雄老師 資工系:謝仕杰老師 電子系:陳柏宏 老師
B型肝炎帶原之肝細胞癌患者接受肝動脈栓塞治療後血液中DNA之定量分析
陆哲明 博士、教授 哈尔滨工业大学自动化测试与控制研究所 哈尔滨工业大学信息对抗技术研究所
Audio.
XI. Hilbert Huang Transform (HHT)
Leftmost Longest Regular Expression Matching in Reconfigurable Logic
Blind dual watermarking for color images’ authentication and copyright protection Source : IEEE Transactions on Circuits and Systems for Video Technology.
Visualizing and Understanding Neural Machine Translation
THE JOURNAL OF CHINA UNIVERSITIES OF POSTS AND TELECOMMUNICATIONS
Time Frequency Analysis and Wavelet Transforms Oral Presentation
Rate and Distortion Optimization for Reversible Data Hiding Using Multiple Histogram Shifting Source: IEEE Transactions On Cybernetics, Vol. 47, No. 2,February.
張真誠 逢甲大學 講座教授 中正大學榮譽教授、合聘教授 清華大學合聘教授
Manifold Learning Kai Yang
超高分辨率像素移位技术 1.
視訊串流\Streaming Video Part-2-3 Compression Digital image/video
3D Model Wan-Yu Chen NTUEE.
數位典藏之數位影像處理技術探討 雲端上的寶藏~ 國立新港藝術高中 蘇淵源.
Source: IEEE Access, vol. 5, pp , October 2017
ARTcode: Preserve Art and Code In Any Image
第十章 基于立体视觉的深度估计.
研究、論文、計畫與生活之平衡 演講人:謝君偉 元智大學電機系 2018年11月22日.
Noise & Distortion in Microwave Systems.
CHAPTER 6 認識MapReduce.
影像篡改之偵測與定位 (運用密碼與編碼技術)
第三章 基本觀念 電腦繪圖與動畫 (Computer Graphics & Animation) Object Data Image
Outrigger Optimization for Super Tall Structures Under Multiple Constraints 多约束条件下超高结构伸臂系统优化.
Introduction to Multimedia Coding
第三章:Huffman编码 信源概率模型已知的Huffman编码 信源概率模型未知的Huffman编码 Huffman编码中的码字设计
多媒體概論報告-BMP 組員名稱: 盧彥良-資料蒐集 周誠哲-資料蒐集
第十章 轉換編碼 視轉換為座標軸之旋轉 視轉換為基底函數之分解 影像轉換 轉換編碼之方法 JPEG DCT 演算法 JPEG DCT 之結果
Overview of image quality assessment
Author: Wu, H.-C., Wu, N.-I., Tsai, C.-S. and Hwang, M.-S. Source:
SoC Final Project -JPEG Encoder
報告人:林冠丞 指導教授:陳偉業 班級:碩研資管一甲 學號:MA490212
Source: IEEE Transactions on Image Processing, Vol. 25, pp ,
MORE THAN TEMPLATE 工作总结 / 述职汇报 / 论文答辩 / 产品介绍.
第三章 基本觀念 電腦繪圖與動畫 (Computer Graphics & Animation) Object Data Image
信 息 隐 藏 技 术 与 应 用 第八章 数字水印的评价理论 和测试基准
VIDEO COMPRESSION & MPEG
數位浮水印技術及其應用.
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
一個基于相鄰區塊相似性和動態次編碼簿的低位元率向量量化 圖像壓縮法
VII. Data Compression (A)
前向人工神经网络敏感性研究 曾晓勤 河海大学计算机及信息工程学院 2003年10月.
3.5 Region Filling Region Filling is a process of “coloring in” a definite image area or region. 2019/4/19.
Chapter 04 流程能力與績效分析.
Source: Journal of Network and Computer Applications, Vol. 125, No
NSC D 蔣依吾 中山大學資訊工程系 紅外線點目標的檢知法則 Automatic detection of small targets in infrared image sequences containing evolving cloud clutter NSC D
Inter-band calibration for atmosphere
WEBee: Physical-Layer Cross-Technology Communication via Emulation
A Data Mining Algorithm for Generalized Web Prefetching
An Efficient MSB Prediction-based Method for High-capacity Reversible Data Hiding in Encrypted Images 基于有效MSB预测的加密图像大容量可逆数据隐藏方法。 本文目的: 做到既有较高的藏量(1bpp),
第9章 交期管理.
一個基于相鄰區塊相似性和動態次編碼簿的低位元率向量量化 圖像壓縮法
張真誠 逢甲大學 講座教授 中正大學 榮譽教授 清華大學 合聘教授
醫工所碩士二年級 R 葉昱甫 電子所碩士一年級 R 謝博鈞 電信所碩士一年級 R 王欣平
Reversible Data Hiding in Color Image with Grayscale Invariance
Fast Image Dehazing Algorithm using Morphological Reconstruction
張真誠 逢甲大學 講座教授 中正大學 榮譽教授 清華大學 合聘教授
Speaker:Yeong-Luh Ueng 2018/4/17
一個基于相鄰區塊相似性和動態次編碼簿的低位元率向量量化 圖像壓縮法
Format of Posters in English
以碎形正交基底和時間情境圖為基礎進行之視訊檢索 Video retrieval based on fractal orthogonal bases and temporal graph 阿凡達 研究生:張敏倫 指導教授:蔣依吾博士 國立中山大學資訊工程學系.
Chapter 0 Introduction to Medical Image Processing
Principle and application of optical information technology
Hybrid fractal zerotree wavelet image coding
Presentation transcript:

A high payload data hiding scheme based on modified AMBTC technique Multimedia Tools and Applications : SCI 1.5 in 2018 Aruna Malik :来自印度勒克瑙北方邦技术大学和M.Tech的计算机科学与工程专业。 Geeta Sikka目前在贾朗达尔国立技术学院计算机科学与工程系担任副教授。 Harsh K. Verma是印度贾朗达尔国立技术学院计算机中心的教授和主任 Sourse: Multimedia Tools and Applications, Volume 76, Issue 12, June 2017, pp 14151–14167 Authors: Aruna Malik, Geeta Sikka, Harsh K. Verma Speaker: Guan-Long Li Date: 2018/8/23

Outline Related Work Proposed method Experiment Results Conclusion Absolute moment block truncation coding(AMBTC) Proposed method Experiment Results Conclusion

Related Works - AMBTC k: n × n image block x: image block ( 𝑥 1 , 𝑥 2 ,.., 𝑥 𝑘 ) q: the number of pixels greater than the threshold value Cut grayscale images into non-overlapping image blocks One bit map BM and two quantization levels a , b to represent the block Encoded as {a, b, B} after compression Step 1 : Calculate the mean value 𝑥 of the block Step 2 : Create a bit plane : the original image pixel value < 𝑥 ,‘0’ in the bit map. the original image pixel value > 𝑥 ,‘1’ in the bit map. Step 3 : Calculate the quantization levels : Calculate the momentum absolute value 𝛼 Calculate the low mean value as quantization level a of the block Calculate the high mean value as quantization level b of the block 將灰階影像切割成不重疊的影像區塊 一個位元圖BM及兩個重建階 a , b 來表示該區塊 壓縮後編碼為(a, b, BM) Lema M, Mitchell O (1984) Absolute moment block truncation coding and its application to color images. IEEE Trans Commun 32:1148–1157

Related Works - AMBTC quantization level a: 8 9 8 6 7 9 10 12 11 8 13 14 6 7 1 Mean Value : 10 10 12 11 13 14 quantization level b: 12

Proposed method Input- I: original image of size N × N pixels, thr: threshold, S: secret data bit stream. Output- AMBTC compressed stego codes Step 1: Divide input image I into 4 × 4 non overlapping blocks in raster scan order. Step 2: Process each block using AMBTC scheme to get two quantization levels a and b, mean value, and a bit plane B. Step 3: Reprocess each block to get two bit plane B’ so that caused noise due to the compression is reduced. • the original image pixel value < a ,‘00’ in the bit plane. • a <= the original image pixel <= mean value, ‘01’ in the bit plane. • mean < the original image pixel value < b, ‘10’ in the bit plane. • b < the original image pixel value ,‘11’ in the bit plane. Step 4: Calculate absolute difference value D for the block , such that D = |a − b|.

Proposed method Output : {a’, b’, c’, d’, B’} |a’-b’|<=thr Calculate four new quantization levels Replace bits of the two bit plane with 32 bits Output : {a, b, c’, d’, B’} D<=thr |a’-b’|>thr Step 4 |a’-b’|<=thr Output : {a’, b’, c’, d’, B’} D>thr Replace first LSB of the two bit plane with 16 bits Calculate four new quantization levels Output : {a, b, c’, d’, B’} |a’-b’|>thr Four new quantization levels 𝑎 ′ = 1 𝑞 00 𝑥∈ 𝐺 00 𝑥 , 𝑏 ′ = 1 𝑞 11 𝑥∈ 𝐺 11 𝑥 𝑑 ′ = 1 𝑞 01 𝑥∈ 𝐺 01 𝑥 , 𝑐 ′ = 1 𝑞 10 𝑥∈ 𝐺 10 𝑥

Proposed method 100 90 85 82 76 75 72 77 80 81 79 1 11 10 00 01 AMBTC Mean = 81 Original block One bit plane a=77, b=85 Two bit plane

Proposed method 11 10 00 01 10 01 00 11 Embed in Smooth block Two bit plane Stego block a’=78, b’=78 c’=83, d’=81 Secret = (10100101001011100010111011100101)

Proposed method 186 211 212 205 181 208 202 185 203 193 194 190 1 00 11 10 01 AMBTC Mean = 200 Original block One bit plane a=188, b=207 Two bit plane

Proposed method 00 11 10 01 01 11 10 00 Embed in complex block Two bit plane Stego block a’=187, b’=207 c’=207, d’=190 Secret = (1110010100001010)

Proposed method 10 01 00 11 D = |a’-b’| = |78-78| = 0 < thr {a’, b’, c’, d’} ={78,78,83,81} Secret = (10100101001011100010111011100101) 01 11 10 00 D = |a’-b’| = |187-207| = 20 > thr {a’, b’, c’, d’} ={187,207,207,190} Secret = (1110010100001010)

Experiment Results

Experiment Results Ou et al. :提出了一種基於絕對矩塊截斷編碼(AMBTC)的改進圖像隱寫方案。所提出的方案的目的是同時實現高有效載荷,良好視覺質量和低計算複雜度。在該方案中,預定義閾值以將AMBTC壓縮代碼的塊分類為平滑或複雜塊,然後嵌入數據。對於平滑塊,它們的位平面用於嵌入數據。之後,重新計算平滑塊中的兩個量化級別以最小化圖像質量的失真。對於復數塊,通過交換兩個量化級的順序一起切換比特平面來隱藏一部分秘密比特,通過該比特平面可以增加有效載荷而沒有任何失真。此外,所提出的方案繼承了AMBTC方法的優點,例如令人滿意的圖像質量,易於實現和低計算複雜度。通過可調閾值,所提出的方案的應用變得靈活,這意味著不同的閾值可以用於不同的應用。實驗結果和分析證明了該方案的有效性和優越性。 [20]Ou D, Sun W (2014) High payload image steganography with minimum distortion based on absolute moment block truncation coding. Multimed Tools Appl 74(21):9117–9139 [21]Yang B, Schmucker M, Funk W, Brush C, Sun S (2011) Integer DCT-based reversible watermarking for images using companding technique. Proc Int J Electron Commun 65:814–826 [18] Petitcolas F, Anderson R, Kuhn M (1999) Information hiding – a survey^. Proc IEEE 87(7):1062–1068 [22] Zhang Y, Guo S, Lu Z, Luo H (2013) Reversible data hiding for BTC-compressed images based on lossless coding of mean tables. IEICE Trans Commun 96(2):624–631

Conclusions This scheme embeds almost 2 times more secret data than the existing schemes with better visual quality. The scheme affects the AMBTC compression ratio.