粒子宇宙学简介 中科院高能所 张新民 2006.6.5
物质基本结构 (粒子物理) 三代夸克和轻子 规范相互作用: SU(3) C×SU(2)L×U(1)Y Higgs 粒子仍未发现 物质基本结构 (粒子物理) 三代夸克和轻子 规范相互作用: SU(3) C×SU(2)L×U(1)Y Higgs 粒子仍未发现 真空自发破缺机制???
Important: 精确宇宙学时代 WMAP: The Biggest Surprise Nothing Particular Surprising Inflation Important: 精确宇宙学时代
问题: 什么是暗物质? 暗能量的物理本质是什么? 为什么没有反物质?
需要新物理 暗物质:中微子是暗物质,但不是冷暗物质;什么是冷暗物质? 暗能量:势能和真空能是暗能量,但理论预言太大-宇宙学常数问题? 反物质:标准模型可以产生正反物质不对称,但太小,需要新物理? Inflation:什么是inflaton?
中微子与暗物质 中微子是暗物质粒子 II. 热暗物质不起主导作用
Application showcase: neutrino mass neutrino mass and abundance: O. Elgaroy et al (2dFGRS) PRL 89, 061301 (2002) hot dark matter suppress power at small scale current cosmological bound: (95% CL) m<1.7/3 eV (weak prior) m <0.6/3 eV (strong prior) vs. tritium decay: me < 2.2 eV
hep-ph/0503257
Weighing neutrinos in the presence of a running primordial spectral index astro-ph/0605742 Bo Feng, Jun-Qing Xia, Jun'ichi Yokoyama, Xinmin Zhang, Gong-Bo Zhao The three-year WMAP(WMAP3), combined with other cosmological observations from galaxy clustering and Type Ia Supernova (SNIa), prefers a non-vanishing running of the primordial spectral index independent of the low CMB multipoles. Motivated by this feature we study cosmological constraint on the neutrino mass, which severely depends on what prior we adopt for the spectral shape of primordial fluctuations, taking possible running into account. As a result we find a more stringent constraint on the sum of the three neutrino masses, m_\nu < 0.76 eV (2 \sigma), compared with the case where power-law prior is adopted to the primordial spectral shape.
暗物质粒子最佳候选者: 轴子(Axion) 中性伴随子(Neutralino) 近年,较多研究“温暗物质”: Interacting Dark Matter Non-thermal produced Neutralino Steril Neutrino Gravitino Quintessino
轴子(Axion) 为解决强CP破坏问题而引进 (Peccei & Quinn) 轴子: 标量粒子 探测: 至今未发现
Cosmic rays from the halo of the MW—some weak hints on DM Baltz et al. 2002 Some astrophysics observations can not be explained by the canonical physics. They may indicate the signal of DM, however, no conclusion can be drawn now. One of such experiments is the HEAT. (The HEAT signal may indicate the non-thermal production or the subhalo nearby)
ASg and ARGO: (High Duty cycle,Large F.O.V) ~100GeV ~TeV 中意合作 ARGO 实验RPC大厅 中日合作 AS γ 实验区闪烁体探测器阵列 Here comes the two experiments hosted by YBJ observatory. One is call ASg, a sampling detector covering 1% of the area and have been operated for 15 years. The other full coverage one is called ARGO, still under installation. ASg use scintillation counter and ARGO use RPC to detector the arrival time and the number of secondary particles, with which the original direction and energy of CR particle can be restored. ASg has a threshold energy at a few TeV while ARGO down to about 100GeV. Both experiment have the advantages in high duty cycle and large field of view. Because for both of the experiments there is only one layer of detector, it is very difficult to separate the g ray shower from CR nuclei showers. Working in the similar energy range on mountain Jemez near Los Alamos, by using water cherenkov technique, MILAGRO has two layer of PMT, which enable it a rather good capability to separate g ray from background. Though it locates in a low altitude, has a smaller effective area, it has similar sensitivity to ASg experiment. To combine this technique with high altitude would greatly improve the sensitivity of our current EAS experiments. ARGO hall, floored by RPC. Half installed.
暗能量 实验证据: 基本特征: 注意:辐射 w=1/3, 物质 w=0
暗能量的候选者: 1,真空能(宇宙学常数) 但是: 宇宙学常数问题! 为什么w=-1? 物理? Fine Tuning
2,动力学场(Quintessence) 状态方程的参数化: → 检验: A. 状态方程的参数化: * Within 2 σ, the cosmological constant fits well the data * Data mildly favors a running of the W across -1
Constraints on EOS from SN Ia 暗能量参数化: I. 一个常数 w II. 动力学参数化 a. b. 利用 SN Ia 数据限模型 Astro-ph/0510447
Feng, Wang & Zhang Astro-ph/0404224 Huterer & Cooray Astro-ph/0404062
4, Quintom: w transit from below –1 to above -1 * Within 2 σ, the cosmological constant fits well the data * Data mildly favors a running of the W across -1 Feng, Wang & Zhang Astro-ph/0404224 注意:1, 真空能: w=-1 2, Quintessence: -1≤w≤1 3, Phantom: -1≥w 4, Quintom: w transit from below –1 to above -1
astro-ph/0407259, Steen Hannestad, Edvard Mortsell Probing Dark Energy with Supernovae : a concordant or a convergent model? Authors: J.-M. Virey, A. Ealet, C. Tao, A. Tilquin, A. Bonissent, D. Fouchez, P. Taxil,astro-ph/0407452
Constraints on dark energy with SN Ia (Riess) + SDSS + WMAP-1 最佳拟合值: W0=-1.30 W1=1.25 Observing dark energy dynamics with supernova, microwave background and galaxy clustering Jun-Qing Xia, Gong-Bo Zhao, Bo Feng, Hong Li and Xinmin Zhang Phys.Rev.D73, 063521, 2006
Global fitting with SN Ia, galaxy clustering and WMAP3 Quintom is also mildly favored The standard ΛCDM model is still a good fit to the current data Probing dynamics of DE with supernova, galaxy clustering and the three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations G.-B. Zhao, J.-Q. Xia, B. Feng and X. Zhang, astro-ph/0603621
Riess et al, astro-ph/0402512 SNAP Collaboration astro-ph/0405232
暗能量研究现状小结 宇宙学常数可以自洽的拟合数据 动力学暗能量(Quintessence, Phantom, Quintom………)没有被排除 Quintom is mildly favored 动力学暗能量: 期待着与物质的相互作用--相互作用暗能量
Quintessence 场: 宇宙空间中的“以太” 精细结构常数的改变
Quintessence 场: 宇宙空间中的“以太” 中微子与暗能量有关吗? ΛCDM: QCDM: 可以改变 顾佩洪,王秀莲,张新民,PRD68, 087301 (2003) 中微子振荡可以检验? GRB: Delay of flight time? 宇宙学限制? NEUTRINO OSCILLATIONS AS A PROBE OF DARK ENERGY D. Kaplan, A. Nelson, N. Weiner
Cosmological evolution of Interacting Dark Energy models with massvarying neutrinos hep/ph/0412002 -Xiaojun Bi, Bo Feng, Hong Li, Xinmin Zhang
中微子振荡检验暗能量 基本想法: 其中 的值由势函数 决定, 太阳中微子振荡: 其中 的值由势函数 决定, 太阳中微子振荡: D.B. Kaplan et al., PRL 93,091801 (2003); V. Barger et al., PRL 95 (2005) 211802; M. Cirelli et al., NPB 719 219 (2005).
暗能量研究的重要意义 —— 物理学和天文学的重大革命 宇宙学常数: 危机 暗能量和宇宙的命运
宇宙可能的几种命运:
Oscillating Quintom and the Recurrent Universe: astro-ph/0407432 Bo Feng, Minzhe Li, Yunsong Piao, Xinmin Zhang
Parameterization: Astro-ph / 0605366
问题的提出: * 注: 以上是CPT是守恒的 定义 BBN: CMB: Sakharov三个条件: C和CP破坏( C是电荷共轭宇称, P是空间宇称 )(CKM矩阵); 脱离热平衡(弱电一级相变) 注:粒子物理标准模型满足以上三个条件,但是,产生的不对称性太小, 所以需要新物理 * 注: 以上是CPT是守恒的 Spontaneous baryo(lepto)genesis 特点: * CPT破坏 * 处于热平衡
近年研究表明: Baryogenesis 与中微子有关系 Leptogenesis: 中微子必须有质量 振荡 (已证实) 中微子部分有CP破坏 (日本到北京2100公里长基线中微子振荡实验)
Leptogenesis 机制 正反物质不对称: M. Tegmark et al, Phys.Rev. D 69, 103501 (2004). Sakharov 三条件: A.D. Sakharov, JETP Lett. 5, 24 (1967). 1. 重子数破坏 2. C 和 CP 破坏 3. 脱离热平衡 Leptogenesis M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986). 1. 右手中微子的 Majorana 质量项破坏轻子数 2. 右手中微子的 Yukawa 耦合项破坏 C 和 CP 3. 右手中微子脱离热平衡 Sphaleron 过程将部分轻子数转化为重子数 V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).
Seesaw 机制 M. Gell-Mann, P. Ramond and, R. Slansky; T. Yanagida; R.N. Mohapatra and G. Senjanovic; S.L. Glashow. For a review, see S.M. Bilenky, C. Giunti, and W. Grimus, Prog.Part. Nucl. Phys. 43, 1 (1999).
Type-I Seesaw 模型下的 Leptogenesis 机制 M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986); M.A. Luty, Phys. Rev. D 45, 455 (1992); R.N. Mohapatra and X. Zhang, Phys. Rev. D 45, 2688 (1992).
W. Buchmuller, P. Di Bari, and M. Plumacher, 参数空间: 参数空间: W. Buchmuller, P. Di Bari, and M. Plumacher, Nucl. Phys. B 665, 445 (2003); Annals. Phys. 315, 305 (2005).
一个统一描述 和 的模型 问题的提出: Dirac 理论 反粒子 ----Baryogenesis 一个统一描述 和 的模型 问题的提出: Dirac 理论 反粒子 ----Baryogenesis “真空不空” ---- Dark Energy 微观 宇观 Any connections?
重子有效化学势 热平衡 宇宙熵密度: 观测值: 模型: Solution:
模型检验: 其中: 实验探测: in the future CMB polarization experiments will be Bo Feng, Hong Li, Minzhe Li and Xinmin Zhang Phys. Lett. B620(2005)27 其中: 实验探测: in the future CMB polarization experiments will be Tested. 有效理论: 由baryogenesis:
Searching For CPT Violation With WMAP And BOOMERANG astro-ph/0601095 Bo Feng, Mingzhe Li, Jun-Qing Xia, Xuelei Chen, Xinmin Zhang Version accepted by PRL We search for signatures of Lorentz and $CPT$ violations in the cosmic microwave background (CMB) temperature and polarization anisotropies by using the WMAP and the 2003 flight of BOOMERANG (B03) data. We note that if the Lorentz and $CPT$ symmetries are broken by a Chern-Simons term in the effective lagrangian, which couples the dual electromagnetic field strength tensor to an external four-vector, the polarization vectors of propagating CMB photons will get rotated. Using the WMAP data alone, one could put an interesting constraint on the size of such a term. Combined with the B03 data, we found that a nonzero rotation angle of the photons is mildly favored: $\Delta \alpha= -6.0^{+4.0}_{-4.0}$ $^{+3.9}_{-3.7}$ deg (1, 2 $\sigma$).
Cosmology and collider physics Baryogenesis: two Higgs models, left-right symmetric; SUSY; anomalous top,Higgs couplings------tested by LHC Dark matter: Neutralino --------tested by LHC Dark energy & inflation (scalar fields: quintessence, quintom; inflaton): Higgs tested at LHC
极大与极小,微观与宇观,粒子物理与宇宙学的结合 探讨描述宇宙创生,演化的相互作用统一模型。
Thanks !