三、 配位滴定 (一) 概 述 配位滴定是以配位反应为基础 的滴定分析方法。通过配位反应形 成的配合物按照配体的类型不同可

Slides:



Advertisements
Similar presentations
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
Advertisements

第9章 配位化合物 9-1 配合物的基本概念 9-2 配合物的化学键理论 9-3 配位平衡 9-4 螯合物 9-5 配位滴定.
课业2.4 土壤因子的调查与分析 POWEPOINT 适用于简约清新主题及相关类别演示.
第三节 硒 Selenium.
统一定罪标准 严惩环境犯罪 —《关于办理环境污染刑事案件适用法律 若干问题的解释》解读
碘量法应用与实例:维生素C含量测定.
络 合 滴 定 法 (Complexometric Titration)
第二十章 配位滴定法.
第六章 灰分及几种矿物元素的测定 西昌学院轻化工程学院.
第六章 络合滴定法 副反应系数 主要内容 条件稳定常数 滴定方法基本原理.
第六章 络合滴定法.
第六章 络合滴定法 1.2 分析化学教研室.
第五章 配位化合物.
化学化工学院 梁少俊 分析化学实验.
第三章 配位滴定法 EDTA Zn2+.
EDTA标准溶液配制与标定 水总硬度的测定.
实验六 EDTA标准溶液的标定及自来水硬度的测定
(Complexometric Titration)
由中心离子和单齿配位体(如 NH3, Cl-, F-等)形成,分级络合
第五章 配位滴定法 配位滴定法: 又称络合滴定法 滴定条件: 配位剂种类: 以生成配位化合物为基础的滴定分析方法
第 八 章 配 位 滴 定 法.
Coordination Compound and Complexometry
3.8 酸碱滴定法的应用 3.8.1酸碱标准溶液的配制与标定
第八章 配位化合物与配位滴定法 第一节 配位化合物 第二节 配位平衡 第三节 配位滴定法 制作人:吴晟.
Chapter 10 §10~2配位滴定法 10.1作业:11、13、15、16、18.
The Determination of Magnesium by Direct Titration
第3章 络合滴定法 complexometric titration
本章导学:教学要求、重难点、基本结构、学习方法建议
第五章 配位滴定法 一、EDTA及其金属络合物的稳定常数 1.氨羧络合剂 最常见:乙二胺四乙酸 (Ethylene Diamine
第九章 配位化合物与配位滴定法 本章要点: 1.配位化合物的组成与命名 2. 配位化合物的价键理论 3. 配位平衡
第十一章 配位滴定法 主要内容: 1.配位滴定法概述 2.影响EDTA配合物稳定性的因素 3.配位滴定基本原理 4.金属离子指示剂
第一讲 配位滴定.
水的总硬度及钙镁离子含量的测定.
龙湾中学 李晓勇 学习目标: 能根据所给溶液写出单一溶液、混合溶液中的电荷守恒关系式。
第一节 配位滴定法的基本原理.
第三章络合平衡与络合滴定 GXQ 分析化学 学年.
第7章 络合滴定法 7.1 概述 7.2 溶液中各级络合物型体的分布 7.3 副反应系数及条件稳定常数 7.4 EDTA滴定条件及其影响因素
4.4 混合金属离子的选择性滴定 控制酸度分步滴定 M+N Y(N) Y(H)
4.2.2 络合反应的副反应系数 M + Y = MY(主反应) 条件(稳定)常数 HY H6Y NY MOH M(OH)p MA MAq
第九章 化 学 分 析.
課程名稱:原子量與莫耳 編授教師: 中興國中 楊秉鈞.
龙湾中学 李晓勇 学习目标: 能写出单一溶液、混合溶液中的质子守恒关系式。
配位滴定法.
混合离子络合滴定的最低允许PH值的计算 报告人:肖开炯.
第 七 章 配 位 反 应.
Complex-formation titration
3.6.2 滴定分析对化学反应的要求及滴定的方式与分类(自学) 基准物质与标准溶液(自学)
第五章 配位化合物.
天然水总硬度的测定.
細數原子與分子 編輯/楊秉鈞老師 錄音/陳記住老師 ◆ 原子量與分子量 ◆ 計數單位─莫耳 ◆ 公式整理 ◆ 範例─莫耳 ◆ 體積莫耳濃度
氢离子浓度 对滴定分析影响的综述 化学四班 刘梦.
实 验 讲 座.
基准物质(p382,表1) 1. 组成与化学式相符(H2C2O4·2H2O、NaCl ); 2. 纯度>99.9%; 3. 稳定(Na2CO3、CaCO3、Na2C2O4等) 4. 参与反应时没有副反应.
理化检验 EDTA的标定及水总硬度的测定 一、实验目的 掌握EDTA标准溶液的配制及标定原理和方法; 了解缓冲溶液的作用;
(五)金属指示剂 配位滴定中用于指示滴定终点 的指示剂,简称金属指示剂. 1.金属指示剂的变色原理 金属指示剂本身是一种弱的
习题 1.什么是化学计量点?什么是滴定终点?它们有何不同? 化学计量点: 在滴定过程中, 当滴入 的标准溶液的物质的量与待测定组
强酸(碱)溶液 一元弱酸(碱)溶液 多元弱酸(碱)溶液 两性物质 混合酸碱溶液 各种体系[H+]浓度的计算
酸碱滴定基本原理 acid-base titration
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
实验 二、配合平衡的移动 Cu 2+ + NH3 Cu(NH3)4 HCl Na2S Zn EDTA NH3 深蓝色消失
问1:四大基本反应类型有哪些?定义? 问2:你能分别举两例吗? 问3:你能说说四大基本反应中,反应物和生成物的物质类别吗?
第6章 络合平衡和络合滴定法 6.1 常用络合物 6.2 络合平衡常数 6.3 副反应系数及条件稳定常数 6.4 络合滴定基本原理
第十一章 配合物结构 §11.1 配合物的空间构型 §11.2 配合物的化学键理论.
四、标准加入法 (Q=0) 序 号 测定液浓度 c c c 测定液体积 V V V 标液浓度 cS cS cS
第五节 缓冲溶液pH值的计算 两种物质的性质 浓度 pH值 共轭酸碱对间的质子传递平衡 可用通式表示如下: HB+H2O ⇌ H3O++B-
过氧化氢含量的测定.
活度系数γ=1,离子积Kw、任意n元酸HnA第m级电离常数Kam、分析浓度CHnA已知且为真值的情况下酸的水溶液[H+]近似计算的误差分析
NWNU-Department of Chemistry
第三节 水溶液的酸碱性及pH计算 一、水的质子自递反应 水的质子自递反应: 水分子是一种两性物质,它既可 给出质子,又可接受质子。于是在水
如加入 A- 适当过量至浓度为 cA,可使平衡向左移动。
Presentation transcript:

三、 配位滴定 (一) 概 述 配位滴定是以配位反应为基础 的滴定分析方法。通过配位反应形 成的配合物按照配体的类型不同可 分为简单配合物和螯合物。

单齿配体:只有一个原子提供孤对电 子与中心原子键合, 即只含一个配位 原子的配体。如F-, CN-, Cl-, NH3, I-, SCN-等, 它们多属无机配位剂。 简单配合物:单齿配体与中心原子配 位形成的配合物(或配离子) 。 如 Cu2+与NH3及Ag+与CN- 配位形成的 配离子都是简单配合物。

多齿配体: 有两个或两个以上的原子 提供孤对电子与中心原子键合, 即含 有两个或两个以上配位原子的配体。 如乙二胺、酒石酸、邻二氮菲及各 种氨羧配位剂等, 它们多属有机配位 剂, 又称螯合剂。

螯合物: 就是多齿配体与中心原 子配位形成的具有环状结构的配合 物。Cu2+与乙二胺配位形成的配离 子即属螯合物。

以Cu2+与NH3的配位反应为例讨论 1:n型简单配合物 Cu2++NH3 Cu(NH3 ) 2+ K1=10 4.31 Cu(NH3)2++NH3 Cu(NH3)22+ K2=10 3.67 Cu(NH3)22++NH3 Cu(NH3)32+ K3=10 3.04 Cu(NH3)32++NH3 Cu(NH3)42+ K4=10 2.30

K1, K2, K3, K4称为铜氨配离子的逐 级形成常数, 或称逐级稳定常数。 逐级稳定常数依次相乘, 称各级累 积稳定常数, 用符号β表示: β1=K1=104.31 β2=K1 . K2=107.98 β3=K1 . K2 . K3=1011.02 β4=K1 . K2 . K3 . K4=1013.82

最后一级累积稳定常数即为总稳 定常数: K总=β4=K1 . K2 . K3 . K4=1013.82

由于形成简单配合物的配位反应是 分级配位, 所形成配合物的稳定常数 数值较小, 大都不够稳定, 不能满足 滴定分析对反应的要求。因此, 目前 除氰量法测Ag+, Co2+ , Ni2+和汞量法 测卤离子外, 一般已不再用于配位滴 定, 而是作为掩蔽剂, 显色剂及指示 剂用。

形成螯合物的配位反应很少有分 级配位现象, 螯合物的稳定常数数 值大, 稳定性高, 通常符合滴定分析 对反应的要求, 所以在配位滴定中 得到较多应用。其中以氨基二乙酸 为基体的氨羧配位剂应用最为广泛。

(二) EDTA及其配位特性 1. EDTA结构与性质 乙二胺四乙酸是一种白色粉末状 结晶, 微溶于水(22℃时0.02g/100mL), 难溶于酸和有机溶剂,易溶于碱及氨 水中。从结构上看它是四元酸, 常用 H4Y式表示。在水溶液中两个羧基上 的氢结合到氮原子上, 形成了双偶极 离子。

乙二胺四乙酸二钠盐(也缩写为 EDTA)是白色结晶, 含两分子结晶水, 用Na2H2Y . 2H2O式表示。这种盐较 易溶于水(22℃时11.1g/100mL),饱和 溶液约为0.3mol/L, 其pH值为4.4。 在配位滴定中, 由于溶解度的原因, 一 般用Na2H2Y . 2H2O配制EDTA标准溶 液。

2. EDTA在溶液中的离解平衡 在酸度较高的溶液中, EDTA 两个羧酸根可以再接受两个H+, 形成H6Y2+离子, 因此EDTA就相 当于六元酸, 在溶液中有六级离 解平衡。

H6Y2+ H+ + H5Y+ Ka1=10-0.9 H5Y+ H++ H4Y Ka2 =10-1.6 H4Y H++ H3Y- Ka3 =10-2.0 H3Y- H++ H2Y2- Ka4 =10-2.67 H2Y- H++HY3- Ka5 =10-6.16 HY3- H++Y4- Ka6 =10-10.26

由以上可知EDTA在溶液中有 H6Y, H5Y, H4Y, H3Y, H2Y, HY和 Y七种型体存在。除Y以外的各型 体可以看成是配位体Y与质子形成 的各级配合物,各级的形成反应、 稳定常数K和累积稳定常数β表示 如下:

(三) EDTA与金属离子的配位特性 (1) 配位反应的广泛性 EDTA能与大多数金属离子 配位形成稳定的配合物。 (2) 1:1配位 EDTA的Y型体与金属离子 配位一般都形成1:1的配合物, 只有少数几种高价金属离子例 外。

(3)配合物的稳定性 金属离子与EDTA形成的络 合物的稳定性, 随金属离子的不 同, 差别较大。 EDTA与部分金 属离子螯合物的稳定常数的对 数值列于下表中。

(4) 配合物的颜色 EDTA与无色金属离子配位, 形成的配合物也无色; 与有色金 属离子配位, 形成颜色更深的配 合物。几种有色EDTA配合物列 于下表中。

(三) 配位反应的副反应和条件稳 定常数 在一定的条件下, 用副反应系数α来 描述各种副反应对主反应的影响。

1. 配位剂的副反应和副反应系数 (1) 酸效应与酸效应系数 酸效应: 就是由于H+引起的配 位剂Y的副反应。 酸效应系数: 就是用来衡量酸 效应影响程度的大小。用符 号αY(H)。

(式2-24) 式中: [Y]—溶液中EDTA的Y型体 的平衡浓度 [Y´]—未与M配位的EDTA各种型 体的总浓度 [Y´]=[Y]+[HY]+[H2Y]+ [H3Y]+ [H4Y]+ [H5Y]+ [H6Y] 说明:①若αY(H)>1,即[Y´]>[Y] 说明有酸效应。 ②若αY(H)=1, 即[Y´]=[Y], 没有酸效应。

(式2-25) (式2-26) (式2-27)

例1 计算在pH=5.0时EDTA的酸 效应系数及其对数值。

(2) 共存离子效应与共存离子效应系数 共存离子效应: 用EDTA滴定金属 离子M时,若M与N共存, 且N也能与 Y进行配位反应,影响主反应的正 向进行的现象。其影响程度大小用共存离子效应系数αY(N)衡量。 N+Y  NY         

(式2-28)

(3) 配位剂的总副反应系数αY

例2 在0.10mol/L HNO3溶液中, 用 EDTA滴定Bi3+, 若溶液中同时含有 0.010mol/L的Pb2+, 求EDTA的总副 反应系数αY。

2. 金属离子的副反应和副反应系数 (1) 配位效应与配位效应系数 配位效应:由于其他配位剂引 起的金属离子的副反应, 影响主 反应进行程度的现象, 称为金属 离子的配位效应。配位效应对 主反应影响程度的大小用配位 效应系数αM(L)衡量。

式中: [M] —金属离子平衡浓度 [M´]—没与Y配位的金属离子总浓度。 αM(L)值越大, 表明其他配位剂L对主 (式2-29) 式中: [M] —金属离子平衡浓度 [M´]—没与Y配位的金属离子总浓度。 [M´]=[M]+[ML1]+ [ML2]+……+ [MLn] αM(L)值越大, 表明其他配位剂L对主 反应进行的影响程度也越大。αM(L) =1,[M´]=[M],即不存在配位效应。

αM(L) 计算公式推导: (式2-30)

由上可见,αM(L)是溶液中L浓度 的函数, 当L的平衡浓度[L]一定时, 配位效应系数αM(L)就是一个定值。 若已知αM(L)和[M´],根据式2-29可 以求得金属离子的平衡浓度[M]。

例3 在0.010mol/LZn2+溶液中, 加入 NH3-NH4Cl缓冲溶液,如果平衡时NH3 的浓度为0.010mol/L, 试求αZn(NH3)值 和溶液中Zn2+的平衡浓度。 解: Zn2+和NH3的四级配位反应的各 级配合物的累积稳定常数分别为 102.37,104.81,107.31,109.46。

(2) 水解效应及水解效应系数 水解效应: 在酸度较低的溶液中,金 属离子常与OH-形成各种羟基配合 物从而对主反应产生影响的现象。 影响程度的大小用水解效应系数 αM(OH)衡量。 在溶液pH值不高时,αM(OH)值一般 接近于1,此时水解效应常可不予考 虑。

(3) 金属离子的总副反应系数αM (式2-31)

3. 配合物的副反应和副反应系数 配合物MY在酸度较高溶液中可 与H+生成酸式配合物MHY, 在碱度 较高溶液中可与OH-生成碱式配合 物M(OH)Y。但MY的酸式或碱式配 合物多数不够稳定, 这种副反应对配 位滴定平衡计算的影响很小, 一般都 忽略不计。

4. 条件稳定常数 M与Y的配位反应达到平衡时 的平衡关系: 如果M、Y有副反应时的平衡 关系为: (式2-32)

αY为定值因此当条件一定时, K´MY 为一常数, 称为配位反应的条件稳定 常数, 或称表观稳定常数。条件改变 KMY是常数,在一定条件下αM, αY为定值因此当条件一定时, K´MY 为一常数, 称为配位反应的条件稳定 常数, 或称表观稳定常数。条件改变 时, αM, αY值改变, K´MY值也变, 所 以条件稳定常数K´MY是在一定条件 下、有副反应存在时的主反应进行 程度的标志, 是对稳定常数KMY的一 种校正。

对式2-32两边取对数 若副反应只有酸效应和配位效应: 副反应只有酸效应: 利用以上三式可以计算在某一定条件下的条件稳定常数。

例4 计算pH=5.0时和pH=10.0, [NH3]=0.10 mol/L时Zn2+和EDTA 配位反应的条件稳定常数。 解:

(四) 配位滴定基本原理 1. 配位滴定曲线 用EDTA标准溶液滴定金属离子M,随着标准溶液的加入,溶液中M浓度不断减小,金属离子浓度的副对数值pM逐渐增大。当滴定到达计量点附近时,溶液pM值产生突跃(金属离子有副反应时,pM´产生突跃)通过计算滴定过程中各点的pM值,可以绘出一条滴定曲线。

现以0.01000mol/L EDTA标准 溶液滴定20.00mL0.01000mol/L Ca2+溶液为例, 讨论滴定过程中 pCa值的变化和滴定曲线的绘制。 假定用缓冲溶液调节pH值为10.0, 缓冲剂不与Ca2+发生配位反应。

(1) 滴定前 [Ca2+]=0.01000mol/L pCa=2.00 (2) 滴定开始到计量点前 pCa值决定于剩余Ca2+浓度 设加入EDTA标准溶液18.00mL(滴 定百分率为90%)

加入EDTA标准溶液19.98mL (滴定百分率为99%) (3) 计量点时 加入EDTA溶液20.00mL(滴定百 分率为100%), [Ca2+]=[Y´], 代入平衡关系式可 以求得pCa。

在配位滴定中,计算计量点时 pM值(以pMsp)的一般公式为 若M有副反应 (式2-33a) (式2-33b)

(4) 计量点后 根据过量EDTA,可以求出Y´ 浓度, 再从平衡关系式计算Ca2+ 浓度。设加入EDTA标准溶液 20.02mL(滴定百分率为100.1%)

平衡关系式可得: 如此将滴定过程中各点的pCa值 计算出来列与下表中, 它的滴定 曲线如下图所示,突跃区间为pCa 5.30-7.24.

用0.01000mol/L EDTA溶液滴定 20.00mL0.01000mol/L Ca2+溶液(pH=10)

2. 影响pM突跃区间大小的因素 (1) 条件稳定常数的影响 M和EDTA浓度一定, 配合物的 K´MY越大, 滴定的pM突跃区间越 大。但K´MY的大小是受配合物的 稳定常数、溶液的酸度及存在的 其他配位剂浓度影响的, 所以这些 因素也都对配位滴定的pM突跃产 生影响。

越大, pM的滴定突跃区间越大。 同,lg K´MY不同, pM突跃区间也 不同。 ① 在其它条件相同时, KMY越大,K´MY ② 溶液的pH值不 同,lg K´MY不同, pM突跃区间也 不同。

③ 若有其他配位剂L存在,能对 金属离子M产生配位效应。 lgαM(L)值越大,lgK´MY越小, pM突跃区间越小。

(2) 金属离子浓度的影响 若K´MY一定, cM越大,滴定曲 线的起点越低,pM突跃区间 也越大。下图为K´MY =1010 时EDTA滴定不同cM的金属 离子的滴定曲线。

例5 在pH=10. 0, [NH3]=0. 020mol/L 用EDTA标准溶液滴定0 例5 在pH=10.0, [NH3]=0.020mol/L 用EDTA标准溶液滴定0.020mol/L Cu2+溶液,计算滴定到达计量点时 的pCu´和pCu。

3.终点误差 终点误差是由于滴定终点与计量点 不一致而引起的误差,用TE%表示。 若△pM= pMep-pMsp(或△pM´=pM´ep-pM´sp), 则可用林邦误差公式计算:

例6 用0.020mol/L EDTA滴定同浓度 的pb2+,若pH=5.0,终点时pPb=7.0 问终点误差有多大? 解 pH=5.0时 lgαY(H)=6.45

4. 配位滴定准确性的判断 设能够准确进行配位滴定的条件为: (1)TE%≤0.10% (2)指示剂变色点与计量点完全一致 (3)△pM=±0.2 代入林邦误差公式,并整理计算可得:

当 式2-35就是能够准确进行配位滴定的判别式。

当然对终点误差的要求不同,判别式的条件也不同. 例如要求TE%≤1.0%, 则判别式为: 当

例7 在pH=4.0时,用2.0×10-2mol/L EDTA溶液滴定同浓度的Zn2+ 溶液,问能否准确滴定? 解 pH=4.0时, 所以能够准确滴定,终点误差≤0.10%。

5. 单一金属离子滴定的适宜酸度范围 最高酸度: cM为2.0×10-2mol/L而又没有副反应时,要能对其准确滴定,必须满足的条件为 最大的lgαY(H)对应的pH就是某一离子的最高酸度。

最低酸度:即这种离子开始水解析 出沉淀时的酸度,可以从其氢氧化物 的溶度积求算出来. 例8 求用2.0×10-2mol/L EDTA溶液 滴定2.0×10-2mol/LFe3+溶液的适宜 酸度范围.

解; 查表当 时pH=1.2 又当 时, Fe3+开始水解析出沉淀,此时 pOH=11.9,pH=2.1 所以滴定Fe3+的适宜酸度范围为pH值1.2-1.2