Deep Room Recognition Using Inaudible Echos

Slides:



Advertisements
Similar presentations
RFID Information System RFID 的技術原理與應用 Present By Jack Wang (2009 Fall)
Advertisements

牙齒共振頻率之臨床探討 論 文 摘 要 論文名稱:牙齒共振頻率之臨床探討 私立台北醫學院口腔復健醫學研究所 研究生姓名:王茂生 畢業時間:八十八學年度第二學期 指導教授:李勝揚 博士 林哲堂 博士 在口腔醫學的臨床診斷上,到目前為止仍缺乏有效的設備或方法可以評估或檢測牙周之邊界狀態。臨床上有關牙周病的檢查及其病變之診斷工具,
從研究生指導經驗談 研究生如何管理論文研究
二維品質模式與麻醉前訪視滿意度 中文摘要 麻醉前訪視,是麻醉醫護人員對病患提供麻醉相關資訊與服務,並建立良好醫病關係的第一次接觸。本研究目的是以Kano‘s 二維品質模式,設計病患滿意度問卷,探討麻醉前訪視內容與病患滿意度之關係,以期分析關鍵品質要素為何,作為提高病患對醫療滿意度之參考。 本研究於台灣北部某醫學中心,通過該院人體試驗委員會審查後進行。對象為婦科排程手術住院病患,其中實驗組共107位病患,在麻醉醫師訪視之前,安排先觀看麻醉流程衛教影片;另外對照組111位病患,則未提供衛教影片。問卷於麻醉醫師
手持裝置應用系統之設計 與未來發展 黃有評 大同大學 資訊工程系.
English Writing Lecture 9
桂小林 西安交通大学电子与信息工程学院 计算机科学与技术系
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
2014/08/总第58期 推荐阅读 ADCP声学多普勒流速剖面仪.
深層學習 暑期訓練 (2017).
Feng Lin, Chen Song, Yan Zhuang, Wenyao Xu, Changzhi Li, Kui Ren
Some Effective Techniques for Naive Bayes Text Classification
Applications of Digital Signal Processing
TinyLink: A Holistic System for Rapid Development of IoT Applications
Platypus — Indoor Localization and Identification through Sensing Electric Potential Changes in Human Bodies.
Thinking of Instrumentation Survivability Under Severe Accident
Mini-SONG & Site testing at Delingha
CE NVH Team Summary – 2017 Wu, Weidong APRIL 27th , 2017.
報告人:丁英智 資策會 網路多媒體研究所 11/3/2006
Manifold Learning Kai Yang
Consumer Memory 指導老師 莊勝雄 MA4D0102郭虹汝MA4D0201吳宜臻.
Acoustic规范和测试 Base Band 瞿雪丽 2002/1/30.
The Empirical Study on the Correlation between Equity Incentive and Enterprise Performance for Listed Companies 上市公司股权激励与企业绩效相关性的实证研究 汇报人:白欣蓉 学 号:
Source: IEEE Access, vol. 5, pp , October 2017
WiFi-Enabled Smart Human Dynamics Monitoring
肢體殘障人士 Physically handicapped
Retail Customer Online Registration 零售顧客線上註冊教學
创建型设计模式.
1 Introduction Prof. Lin-Shan Lee.
The role of leverage in cross-border mergers and acquisitions
971研究方法課程第九次上課 認識、理解及選擇一項適當的研究策略
Outrigger Optimization for Super Tall Structures Under Multiple Constraints 多约束条件下超高结构伸臂系统优化.
VI. Brief Introduction for Acoustics
參加2006 SAE年會-與會心得報告 臺灣大學機械工程系所 黃元茂教授
Formal Pivot to both Language and Intelligence in Science
邏輯設計 Logic Design 顧叔財, Room 9703, (037)381864,
增强型MR可解决 临床放射成像的 多供应商互操作性问题
A Study on the Next Generation Automatic Speech Recognition -- Phase 2
农村居民的信息需求与获取渠道研究 ——以云南省腾冲县为个案
服務於中國研究的網絡基礎設施 A Cyberinfrastructure for Historical China Studies
大学思辨英语教程 精读1:语言与文化 (说课)
1 Introduction Prof. Lin-Shan Lee.
语音技术的应用及挑战 APPLICATIONS & CHALLENGES OF SPEECH TECHNOLOGIES
研究技巧與論文撰寫方法 中央大學資管系 陳彥良.
Sensor Networks: Applications and Services
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
基于人眼追踪的手机解锁系统 报告人:李映辉 指导老师:王继良
Maintaining Frequent Itemsets over High-Speed Data Streams
Real-Time System Software Group Lab 408 Wireless Networking and Embedded Systems Laboratory Virtualization, Parallelization, Service 實驗室主要是以系統軟體設計為主,
Guide to a successful PowerPoint design – simple is best
Build an app to measure ECG-base HRV via a Smart wristband
Design and Analysis of Experiments Final Report of Project
虚 拟 仪 器 virtual instrument
An Efficient MSB Prediction-based Method for High-capacity Reversible Data Hiding in Encrypted Images 基于有效MSB预测的加密图像大容量可逆数据隐藏方法。 本文目的: 做到既有较高的藏量(1bpp),
An organizational learning approach to information systems development
BiCuts: A fast packet classification algorithm using bit-level cutting
李宏毅專題 Track A, B, C 的時間、地點開學前通知
Efficient Query Relaxation for Complex Relationship Search on Graph Data 李舒馨
An Quick Introduction to R and its Application for Bioinformatics
More About Auto-encoder
Speaker : YI-CHENG HUNG
模式模擬資訊共通平台發展研究 張誠博士 中山科學研究院 系統發展中心.
Class imbalance in Classification
Principle and application of optical information technology
第一届中国无线射频识别基准测试论坛 暨 备忘录签订仪式 2008年3月1日, 香港科技大学 无线射频识别(RFID)基准测试的挑战
Gyrophone: Recognizing Speech From Gyroscope Signals
WiFi is a powerful sensing medium
Gaussian Process Ruohua Shi Meeting
变化的新环境,变化的图书馆 Changing Landscape, Changing Libraries
Presentation transcript:

Deep Room Recognition Using Inaudible Echos ubicomp '18, Sempter, 2018 QUN SONG, CHAOJIE GU, Rui Tan, Nanyang Technological University

ABSTRACT increasing need of localization by mobile application, output 2ms single-tone inaudible chirp by speaker, capture the echos by microphone, a narrow inaudible band for 0.1s, learning to capture the subtle fingerprints, two layer nn achieve best performance, design a RoomRecoginition cloud service and client, infrastucture-free and no add-on hardware, robustness against interfering sounds.

Physical perspective

Software Framework

CONTENTS 01 02 03 04 05 06 07 08 INTRODUCTION RELATED WORK MEASUREMENT STUDY 04 DEEP ROOM RECOGNITION 05 DEEP ROOM RECOGNITION CLOUD SERVICE 06 Performance Evaluation 07 DISCUSSIONS 08 CONCLUSION

01 SECTION INTRODUCATION

1. INTRODUCTION Indoor localization, Various RF, VL, imaging, acoustics, geomagnetism, Each sensing modality bears limitation, this paper design room-level localization approach for off-the-shelf smartphones using audio system

1. INTRODUCTION Room level localization desirable widely The requirement of existing indoor localization R1.dedicated/existing infrastasture R2.add-on equipment R3.(training)process for data acoustic-based room-level localization only R3 casted into a supervised multiclass classification problem easy training data collection(enter,click,key),no-expert

1. INTRODUCTION existing indoor localization system incorporated acoustic sensing SurroudSense(only outperform random guessing, wide audible band, susceptible ambient) Two basic challenge to room recoginition system privacy concern 20khz annoyance limited information about the measured room

1. INTRODUCTION The emerging DL methods demonstrated in image classification, speech recognition, NLP and etc, This paper present the design of a deep room recognition approach, The experiment shows a two-layer CNN fed with spectrogram of the captured inaudible echos achieves the best performance, 100ms audio recording after a 2ms 20khz single-tone chirp batphone 需要10秒的声音文件长度,对隐私问题就不是很好;

1. INTRODUCTION The contributions in-depth measurement study on rooms' acoustic responses to a short-time single-tone inaudible chirp, design of deep model, evaluation of our approach in real-world, engineer implement, chirp信号是,频率随着时间变化;

02 SECTION RELATED WORK

2. RELATED WORK infrastructure-dependent RF infrastructure, 802.11[8,18], cellular[20], FM radio[10], aircraft broadcast[15], WALRUS inaudible beacons to localize mobile, infrastructure-free geomagnetism[11], imaging[13], acoustics acoustics divided into passive sensing, surroundsense[36] active sensing, senmantic location[16,24,34] RoomSense[31],audible,0.68s,SVM, MFCC

2. RELATED WORK active acoustic sensing ranging, BeepBeep[30], SwordFight[40], moving object tracking, finger[38],breath[28], a human body using inaudible chirp[29], gesture recognition,Soundwave[17], doppler-shifted reflection.

03 SECTION MEASUREMENT STUDY

3. MEASUREMENT STUDY lab, measured room 'Lx', opern area 'OA'

3.1 Passive Acoustic Sensing confusion matrix of batphone Batphone,看出 Guoguo, infrastructure acoustic can obtain high accuracy

3.2 Rooms' response to single-tone chirps use loudspeaker to emit an acoustic chirp and use microphone to capture the measured room's response, conduct measurement study to obtain insightful observations on the rooms' responses, every 100ms emit a time duration of 2 ms chirp wave 44.1khz sample rate chirp not overlap echos 34cm away 每个房间选两个点,每个点放一个手机,运行程序半小时,以达到足够的统计意义;第6小节调查了最小训练数据量;

3.2 Rooms' response to single-tone chirps existing active acoustic sensing, sine sweep chirp, maximum length sequence, multi-tone chirp, propose use a sine-tone inaudible chirp to avoid the annoyance to the user and improve the robustness of the room recognition against interfering sounds, 每个房间选两个点,每个点放一个手机,运行程序半小时,以达到足够的统计意义;第6小节调查了最小训练数据量;

3.2 Rooms' response to single-tone chirps 20khz and 21.khz chirp 高于20khz之后,回音的畸变很大,

3.2 Rooms' response to single-tone chirps The decreasing trend indicates that audio system's performance decrease with the frequency. choose 20khz, the lowest inaudible frequency, android Near Ultrasound Tests 高于20khz之后,回音的畸变很大, 声音总可以被分解为不同频率不同强度正弦波的叠加。这种变换(或分解)的过程,称为傅里叶变换。 一般的声音总是包含一定的频率范围。 人耳可以听到的声音的频率范围在20到2万赫兹(Hz)之间。 高于这个范围的波动称为超声波,而低于这一范围的称为次声波。

3.2 Rooms' response to single-tone chirps 2ms,0.5ms 97.5ms echo data period 13.8ms in L3 and outdoor corrletion relationship 高于20khz之后,回音的畸变很大, 声音总可以被分解为不同频率不同强度正弦波的叠加。这种变换(或分解)的过程,称为傅里叶变换。 一般的声音总是包含一定的频率范围。 人耳可以听到的声音的频率范围在20到2万赫兹(Hz)之间。 高于这个范围的波动称为超声波,而低于这一范围的称为次声波。

3.2 Rooms' response to single-tone chirps Frequency-domain analysis guess different rooms have different freqency responses 97.5ms, 10.3hz 4s语音数据,用来手机数据,40个回音数据周期,可能会引起隐私问题,增加计算负载; 最小化处理语音计算的时间来减少隐私问题和计算负载;

3.2 Rooms' response to single-tone chirps Frequency-domain analysis guess different rooms have different freqency responses 97.5ms, 10.3hz 4s语音数据,用来手机数据,40个回音数据周期,可能会引起隐私问题,增加计算负载; 最小化处理语音计算的时间来减少隐私问题和计算负载;

04 SECTION DEEP ROOM RECOGNITION

4.1 Background and Problem Statement Traditional classification algorithm bayes classifier and SVM dimension reduction MFCC, PLP coefficient

4.2 Raw Data Format/Deep Model PSD and spectrogram are two possible raw data formats for deep learning FFT on the 4300 data points in the echo data use 147 points in the [19.5,20.5]khz

4.2 Raw Data Format/Deep Model 22000samples from 22 rooms, every sample 100ms training set, validation set and testing set

4.3 Hyperparameter Settings 理论上是可以通过优化图来解决SLAM的问题;但是实际上,SLAM框架对false positive比较敏感; 提出新的方法来解决;

DEEP ROOM RECOGNITION CLOUD SERVICE 05 SECTION DEEP ROOM RECOGNITION CLOUD SERVICE

5.1 System Overview RoomRecognition support a participatory learning mode, in which CNN is retrained when a mobile client uploads labeled training samples existing studies shows that smartphones and even lower-end IoT platform can run deep models 1、经常会离线

PERFORMANCE EVALUATION 06 SECTION PERFORMANCE EVALUATION

6.1 Evaluation Methodology low performance of passive acoustic sensing only compare RoomRecognize with other based on active acoustic sensing, RoomSense

07 SECTION DISCUSSIONS

7 DISCUSSIONS Moving people in target rooms results in RoomRecognize's performance because of human body To address this issue, other sensing modality geomagnetism, in future, Similar room worth study

08 SECTION CONCLUSION

8 CONCLUSION To address the challenges of limited information carried by the room's response in such a narrow band, applied deep learning capture the subtile difference in room's reponses. two-layer CNN fed with the spectrogram of the echo RoomRecognize

Software Framework

Thank you!