——介绍基本放大电路的原理、直流/交流分析方法以及频率响应概念

Slides:



Advertisements
Similar presentations
模拟电子技术基础 信息科学与工程学院·基础电子教研室.
Advertisements

模拟电子电路习题课1 ——主讲教师: 玄玉波.
3.1 多级放大电路与组合放大电路 3.2 放大电路的频率特性 3.3 放大电路设计举例
第二章 基本放大器 2.1 放大电路的基本概念及性能指标 2.2 单管共射放大电路的工作原理 2.3 放大电路的图解分析法
第3章 分立元件基本电路 3.1 共发射极放大电路 3.2 共集电极放大电路 3.3 共源极放大电路 3.4 分立元件组成的基本门电路.
第四章 放大器基础 4.1 放大电路的基本概念及性能指标 4.2 单管共射放大电路的工作原理 4.3 放大电路的图解分析法
跨过障碍物 成功就在 眼前 自动化与电气工程学院 自师1201班 高鹏程.
第 3 章 放大电路的频率响应.
3 半导体三极管及放大电路基础 3.1 半导体三极管(BJT) 3.2 共射极放大电路 3.3 图解分析法 3.4 小信号模型分析法
低频分立半导体电路 哈工大业余无线电俱乐部
晶体管及其小信号放大 (2).
1.双极性晶体管的结构及类型 双极性晶体管的结构如图1.3.1所示。它有两种类型:NPN型和PNP型。 发射极 集电极 基极 Emitter
第三章 晶体管及其小信号放大(1).
第2期 第1讲 电源设计 电子科技大学.
放大电路中的负反馈 反馈的概念 反馈的类型及其判定 负反馈对放大电路性能的影响 负反馈的典型应用.
现代电子技术实验 4.11 RC带通滤波器的设计与测试.
第11章 基本放大电路 本章主要内容 本章主要介绍共发射极交流电压放大电路、共集电极交流电压放大电路和差分放大电路的基本组成、基本工作原理和基本分析方法,为学习后面的集成运算放大电路打好基础。
第二章 基本放大电路 2.1放大电路概述 2.2基本放大电路的工作原理 2.3图解分析法 2.4微变等效电路分析法 2.5静态工作点稳定电路
第二章 放大电路的基本原理 2.1 放大的概念 2.2 单管共发射极放大电路 2.3 放大电路的主要技术指标 2.4 放大电路的基本分析方法
工作原理 静态工作点 RB +UCC RC C1 C2 T IC0 由于电源的存在,IB0 IC IB ui=0时 IE=IB+IC.
第4章 放大电路的频率特性 [问题提出] 前面所讲述的均以单一频率的正弦信号来研究,事实上信号的频率变化比较宽(例如声音信号、图象信号),对一个放大器,当Ui 一定时,f变化 Uo变化,即Au=Uo/Ui 变化,换句话说: Au与f有关。 为什么Au与f有关呢?什么是频率响应? 频率响应:指放大器对不同频率的正弦信号.
宁波兴港职业高级中学 题目:放大器的静态分析 电工电子课件 主讲:王铖 电工组 《电子技术基础》
2.4 工作点稳定的放大电路 2.5 阻容耦合多级放大电路及其频率特性 2.6 射极输出器
电工电子实验教学中心 晶体管单级共射放大电路 仿真与实践 主讲:许忠仁.
iC iB ib iB uBE uCE uBE uce t uce t 交流负载线,斜率为-1/(RC //RL)
电工电子技术基础 主编 李中发 制作 李中发 2003年7月.
复合管 复合管的组成:多只管子合理连接等效成一只管子。 目的:增大β,减小前级驱动电流,改变管子的类型。
稳压二极管 U I + - UZ IZ IZ UZ IZmax
第2章 半导体三极管和交流电压放大电路 1. 掌握半导体三极管的基本结构、特性、电流分配和放大原理。
半导体三极管 第 2 章 2.1 双极型半导体三极管 2.2 单极型半导体三极管 2.3 半导体三极管电路的基本分析方法
第12章 基本放大电路.
晶体管的大信号应用 -功率放大电路.
第五章 频率特性法 在工程实际中,人们常运用频率特性法来分析和设计控制系统的性能。
第五章 双极结型三极管及其 放大电路 2018年3月26日.
第二章 双极型晶体三极管(BJT).
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
第6章 第6章 直流稳压电源 概述 6.1 单相桥式整流电路 6.2 滤波电路 6.3 串联型稳压电路 上页 下页 返回.
晶体管及其小信号放大 (1).
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
电工电子技术实验 电工电子教学部.
晶体管及其小信号放大 -单管共射电路的频率特性.
晶体管及其小信号放大 -单管共射电路的频率特性.
第 3 章 放大电路基础 3.1 放大电路的基础知识 3.2 三种基本组态放大电路 3.3 差分放大电路 3.4 互补对称功率放大电路
7.2其他放大电路 7.2.1共集电极放大电路 共集电极放大电路又称射极输出器,主要作用是交流电流放大,以提高整个放大电路的带负载能力。实用中,一般用作输出级或隔离级。
第二章 放大电路分析基础 2.1 放大电路工作原理 2.2 放大电路的直流工作状态 2.3 放大电路的动态分析
晶体管及其小信号放大 (1).
实验二 射极跟随器 图2-2 射极跟随器实验电路.
第三章 放大电路的频率响应 3.1 频率响应的一般概念 3.2 三极管的频率参数 3.3 单管共射放大电路的频率响应
第五章 放大器 的 频率特性 放大器 的通频带 第八节 单级 阻容耦合 共射 放大电路 的频率特性 一 二 多级 放大电路 的频率特性 三.
第二章 双极型晶体三极管(BJT).
放大电路的分析与计算.
PowerPoint 电子科技大学 半导体器件的图测方法.
4 场效应管放大电路 4.1 结型场效应管 *4.2 砷化镓金属-半导体场效应管 4.3 金属-氧化物-半导体场效应管
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
电子技术基础.
第七章 频率响应 频率失真 (a)信号 (b)振幅频率失真 (c)相位频率失真
实验一 单级放大电路 一、 实验内容 1. 熟悉电子元件及实验箱 2. 掌握放大器静态工作点模拟电路调试方法及对放大器性能的影响
放大器的图解分析法(2) -----动态分析 您清楚吗? ---孙 肖 子.
模拟电子技术基础 第六讲 主讲 :黄友锐 安徽理工大学电气工程系.
第四章 MOSFET及其放大电路.
负反馈放大器 教师:褚俊霞.
第2章 双极型三极管及其基本放大电路 2.1 双极型三极管 2.2 放大电路的基本概念及其性能指标 2.3 单管共射放大电路
实验7.1 单管放大器的研究与测试 ……………… P167 国家工科电工电子基础教学基地 国 家 级 实 验 教 学 示 范 中 心
课程名称:模拟电子技术 讲授内容:放大电路静态工作点的稳定 授课对象:信息类专业本科二年级 示范教师:史雪飞 所在单位:信息工程学院.
话说”频率响应”(3) ---共集、共基电路的高频响应
9.3 静态工作点的稳定 放大电路不仅要有合适的静态工作点,而且要保持静态工作点的稳定。由于某种原因,例如温度的变化,将使集电极电流的静态值 IC 发生变化,从而影响静态工作点的稳定。 上一节所讨论的基本放大电路偏置电流 +UCC RC C1 C2 T RL RE + CE RB1 RB2 RS ui.
9.5 差分放大电路 差分放大电路用两个晶体管组成,电路结构对称,在理想情况下,两管的特性及对应电阻元件的参数值都相同,因此,两管的静态工作点也必然相同。 T1 T2 RC RB +UCC + ui1  iB iC ui2 RP RE EE iE + uO  静态分析 在静态时,ui1=
双极型晶体三极管 特性曲线 西电丝绸之路云课堂 孙肖子.
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
第二章 放大电路的基本原理 2.1 放大的概念 2.2 单管共发射极放大电路 2.3 放大电路的主要技术指标 2.4 放大电路的基本分析方法
Presentation transcript:

——介绍基本放大电路的原理、直流/交流分析方法以及频率响应概念 单级小信号放大 ——介绍基本放大电路的原理、直流/交流分析方法以及频率响应概念 1、单级共射放大电路 T为NPN型双级型晶体管,UBB、UCC、RB和RL为T提供直流偏置,使T的发射结正偏、集电极反偏,保证T工作在放大区。US为待放大的交流小信号电压。

UBE=UBB-IBRB UCE=UCC-ICRL 当US=0时,放大电路中的电流、电压都是直流信号,此时的电路称为直流回路: 输入回路的IB和UBE之间的关系可用输入特性曲线来描述,被输出回路的IC和UCE之间的关系可用输出特性曲线来描述,同时他们又必须分别满足晶体管外电路的特性方程: UBE=UBB-IBRB UCE=UCC-ICRL

在图形上,两条直线分别和输入/输出曲线相交,交点Q称为直流工作点或静态工作点。Q点的坐标就是晶体管的静态参数:IBQ、ICQ、IBEQ和UCEQ。 UBEQ UBB IBQ Q uBE uBE UCEQ UCC ICQ Q IB=IBQ

晶体管具有合适的Q点之后,就可以对交流小信号进行放大,此时的交流信号量是叠加在直流偏置上。对于交流信号而言,电源UBB和UCC的内阻很小,可视为短路,这样得到放大电路的交流回路:

ib的微小变化引起ic的较大变化(β倍),则负载上的电压uo=-ic×RL变化。 UBEQ UBB IBQ iB Q uBE Ibm t

下图是放大过程图示。可见放大电路中各处的瞬时量(电压、电流)是直流与交流的叠加,直流量提供偏置,交流量才是真正的有用信号。 ic ic Icm Q Ibm ICQ ICQ ωt UCEQ UCC UCE UCEQ UCE ωt Ucem

如果直流偏置(Q点)不合适,会引起放大电路失真: UCE Q ic Uce ic UCE Q Uce (a)截止失真 (b)饱和失真

2、静态工作点估算 当UCC>>UBEQ时 (当ICQ >> ICEO时)

3、交流小信号分析 当交流输入信号足够小且Q点合适,在Q点附近的小范围内,T的输入/输出特性曲线可近似地用直线来描述,也就是说,可用若干线性元件(包括受控源)来等效代替,这就是晶体管的小信号模型。 晶体管的小信号模型与信号频率有关,分为低频小信号模型和高频小信号模型。当输入信号频率不太高时,一般采用低频小信号模型。 IBQ Q uBE uCE iB uCE UCEQ ICQ Q iB iC 低频小信号模型

可从上图晶体管的特性曲线上先求低频小信号模型参数: Rbb’通常为200Ω, 然后得出下图的低频交流小信号模型:

交流性能计算: 首先作出放大电路的交流回路,然后用小信号模型代替晶体管得到交流等效电路,再根据线性电路理论计算各参数。以下面的交流等效回路为例(由于rce较大,通常忽略)。 (1)电压放大倍数

(2)输入电阻 (3)输出电阻

4、放大电路的频率特性 放大电路对不同频率正弦信号的稳态响应称为频率响应或频率特性。 前面计算的电路都没有考虑频率的影响。实际上由于放大电路中连接有偶合电容、旁路电容,晶体管内也存在节电容,放大电路的参数是频率的函数。 以放大倍数为例: (a)幅频特性 (b)相频特性