2.2 直接证明与间接证明.

Slides:



Advertisements
Similar presentations
简单迭代法的概念与结论 简单迭代法又称逐次迭代法,基本思想是构造不动点 方程,以求得近似根。即由方程 f(x)=0 变换为 x=  (x), 然后建立迭代格式, 返回下一页 则称迭代格式 收敛, 否则称为发散 上一页.
Advertisements

輔導處八月份主管會報 報告人 : 洪自強. 輔導組本月工作 【行政文書】 建置 100 學年度工作資料夾 擬訂 100 學年度第一學期行事曆 【認輔工作】 匯整 100 學年度續接個案資料 輔導教師持續關心責任班級高關懷個案 統整國小轉銜個案資料 (3 位 ) 【通報案件】 通報性騷擾案件 1 件.
扬州环境资源职业技术学院基础部 一、微分的定义 二、微分的几何意义 四、微分在近似计算中的应用 第五节 函数的微分 三、基本初等函数的微分公式与微分运算 法则.
第二节 交通运输布局变化的影响 北京市第十一中学 张芊丽 2008年1月.
专利技术交底书的撰写方法 ——公司知识产权讲座
3.2 农业区位因素与农业地域类型.
第五十章 旅外华人现代汉语文学 回目录.
自然與生活科技領域 國中1上 第2單元 生命的維持(一) 生物體的協調 6-1 神經系統 6-2 內分泌系統.
区位因素分析专题.
文题: (1)请以“从此,我(他/她)不再________”为题,写一篇不少于600字的记叙文。 (2)以“做人从_____开始” 为题,写一篇不少于600字的文章。 (3)请以“你还会____吗”为题写一篇600字以上的文章,文体不限,诗歌除外。
第八章   股利分配 本章主要介绍了影响股利政策的因素、主要的股利政策、股利支付的程序及方式、 股票分割及股票回购等问题。通过本章的学习,要求掌握不同股利政策的具体做法,掌握股票股利的作用,了解股票分割和股票回购的涵义及影响。
文明史范式.
金陵科技学院·思想政治理论课教学部 思想道德修养与法律基础 “基础”教研室.
项目二、资金运动管理 模块三、营运资金管理
脾胃病的饮食调理和中医治疗 贵州省中医院脾胃病肝病内科 医生:朱国琪.
2011年10月31日是一个令人警醒的日子,世界在10月31日迎来第70亿人口。当日凌晨,成为象征性的全球第70亿名成员之一的婴儿在菲律宾降生。 ?
如何通过有效的教学 方式改善学生的学习行为
教育老兵教學經驗談 何進財 曾任 教育部社教司司長 訓委會常務委員 中央警官學校兼任講師 台北市立師範學院兼任副教授 國立陽明大學兼任副教授
Chapter 2 不等式.
第 二讲  思想方法概述 角度一 专题一 应用角度例析 角度二 角度三 通法归纳领悟 专题专项训练.
第八章 海岸地貌 海南三亚天涯海角.
马克思主义基本原理概论 上海理工大学社会科学学院 张欢欢.
七年级历史上册 第二单元 国家产生和社会的变革.
第四章 会计职业道德 第三节 会计职业道德教育.
初级会计实务 第八章 产品成本核算 主讲人:杨菠.
第四节 世界的聚落 鸭暖中学地理备课组 学习目标 聚落的主要形式 了解 聚落的形成和发展 世界文化遗产 探索 聚落的形成和发展 环保意识 增强 人地协调发展的环境观.
纳税是有收入的成年人的事,与我们中学生无关。
第10章 注册会计师职业规范体系 2学时 《审计学》武汉理工大学2013.
我的自述 —— 近代中国民族资本主义的发展历程。
中考阅读 复习备考交流 西安铁一中分校 向连吾.
交通事故處置 當事人責任與損害賠償 屏東縣政府警察局交通隊.
●车辆消防安全知识——讲座 车辆消防安全知识 2017/3/17 巫山县公安消防大队 1.
省示范校建设项目验收工作汇报 赵小平
婴幼儿意外伤害预防与急救 上海人口与发展研究中心母婴健康工作室 原上海长海医院儿科 方 凤 宝优网:
新课程高考数学试卷特点分析及复习备考 刘延彬 年3月6日 合肥.
有趣的文字 口 天 天 口 口 木 木 口 下 上 士 干.
2013年普通高等学校招生全国统一 考试(四川卷)考试说明解读
普通高等教育 “十五”国家级规划教材 新世纪全国高等中医药院校规划教材
学习目标: 1、掌握田径运动竞赛的主要规则和裁判方法。 2、通过教学与实践,初步具备小型田径运动会的裁判工作能力。
岗位分析与岗位评价 阿里巧巧
98年桃園縣農村再生總體規劃 社區輔導提案研習營
复习专题: 协调发展 社会和谐 学校:上师大附属外国语中学 说课者:李瑞英.
《采购管理暂行办法》讲解 采购管理办公室
综述政府法制监督工作.
固定资产相关案例 【例1】华西股份有限公司于2012年1月从华东公司购入两辆同型号的二手汽车,价格为12万元,这两辆汽车均需要修理才能使用。其中一辆汽车是由于发动机损坏需进行大修理,估计支出为50 000元,而另一辆是由于电气路线损坏只需简单维修即可使用,预计修理支出为3000元。 在对上述汽车发生的修理费用进行会计处理时,该公司会计王某认为,由于这两辆汽车均需修理才能投入使用,因此根据受益原则,这两辆汽车的维修费用支出作为资本性支出计入所购汽车的成本之中,增加汽车的账面价值;而另一会计李某认为,这两辆汽
中央广播电视大学开放教育 成本会计(补修)期末复习
节日安全防范 人员安全 损耗 消防安全 紧急及意外事件处理.
人教版义务教育课程标准实验教科书 小学数学四年级上册第七单元《数学广角》 合理安排时间 248.
第17课 科学技术的成就(一).
习题课四.
第一节 固定资产概述 第二节 固定资产取得 第三节 固定资产折旧 第四节 固定资产后续支出 第五节 固定资产期末计价 第六节 固定资产处置
四种命题 班级:C274 指导教师:钟志勤 任课教师:颜小娟.
一、情境设置 思考: 下列语句的表述形式有什么特点? 你能判断它们的真假吗? (1)若直线a//b,则直线a和直线b无公共点;(2)2+4=7; (3)垂直于同一条直线的两个平面平行; (4)若x2=1,则x=1; (5)两个全等三角形的面积相等; (6)3能被2整除.
第十二单元 第28讲 第28讲 古代中国的科技和文艺   知识诠释  思维发散.
上海交通大学 概率论第一、二章测验题 大学数学教研室 童品苗.
第五章 定积分及其应用.
第二节 极限的概念 一、数列的极限 二 、函数的极限 第一章 目标: 理解函数极限的定义;无穷小的性质
中考语文积累 永宁县教研室 步正军 2015.9.
小学数学知识讲座 应用题.
倒装句之其他句式.
高点定位 精准发力 扎实推进优质均衡再上新台阶 ——全县初中教学工作会议讲话
第 22 课 孙中山的民主追求 1 .近代变法救国主张的失败教训: “师夷之长技以制 夷”“中体西用”、兴办洋务、变法维新等的失败,使孙中山
导数的几何意义及其应用 滨海中学  张乐.
重庆市万州高级中学 三角函数热点专题复习 重庆市万州高级中学 2019年5月22日星期三7时41分18秒.
函数的表示方法 北师大高中数学必修1 第二章《函数》.
美丽的旋转.
Chapter 1 函數 1.1 函數的定義 1.2 基本函數 1.3 函數的運算 1.4 函數的圖形.
畢氏定理(百牛大祭)的故事 張美玲 製作 資料來源:探索數學的故事(凡異出版社).
102年人事預算編列說明 邁向頂尖大學辦公室製作.
函数与导数 临猗中学 陶建厂.
Presentation transcript:

2.2 直接证明与间接证明

1.知识与技能 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程和特点. 2.过程与方法 进一步体会合情推理、演绎推理以及二者之间的联系与差异.

本节重点:综合法和分析法的概念及思考过程、特点. 本节难点:运用综合法和分析法解答问题. 从实际问题中命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结果的真实性,从证明过程上认识分析法和综合法的推理过程,学会用分析法和综合法证明实际问题,并且理解分析法和综合法之间的内在联系.

一、综合法 1.对综合法的理解 简言之,综合法是一种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法. 由此可见,综合法是“由因导果”,即由已知条件出发,推导出所要证明的结论成立. 2.综合法的特点 从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是寻找“已知”的必要条件.

二、分析法 1.分析法的定义及其理解 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论结为判定一个明显成立的条件(已知条件、定理、定义、公理等).这种证明的方法叫分析法.可见分析法是“执果索因”,步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法.

2.分析法的特点 从“未知”看“需知”,再逐步靠近“已知”. 3.分析法与综合法的区别与联系 (1)区别:综合法是“由因导果”,而分析法则是“执果索因”,它们是截然相反的两种证明方法.分析法便于我们去寻找思路,而综合法便于过程的叙述,两种方法各有所长,在解决具体的问题时,结合起来运用效果会更好.

(2)联系:在分析法中,从结论出发的每一步所得到的判断都是使结论成立的充分条件,最后的一步归结为已被证明了的事实.因此从分析法的最后一步又可以倒推回去,直到结论,这个倒推的证明方法就是综合法.

综合法 分析法 定义 利用 和某些数学 、 、 等,经过一系列的 ,最后推导出所要证明的结论成立,这种证明方法叫做综合法 从要证明的 ,逐步寻求使它成立的 ,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件)、 、 、 等),这种证明方法叫做分析法 框 图 表 示 (P表示 、已有的 、 、 等,Q表示 ) 特点 顺推证法或由因导果法 逆推证法或执果索因法 结论出发 已知条件 定义 定理 充分条件 公理 推理论证 定理 定义 公理 已知条件 定义 定理 公理 所要证明的结论

[点评] 1.综合法证明问题的步骤 第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法. 第二步:转化条件,组织过程.把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.

第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结解题方法的选取.

[点评] (1)分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论; (2)分析法证明不等式的思维是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式; (3)用分析法证明数学命题时,一定要恰当地用好“要证”、“只需证”、“即证”等词语.

[分析] 由题目可获取以下主要信息: ①a、b、c是不全相等的三个正数;②所求的不等式是以对数形式给出且底数0<x<1.解答本题的关键是利用对数运算法则和对数函数性质转化成证明整式不等式.

[点评] 综合法推理清晰,易于书写,分析法从结论入手,易于寻找解题思路,在实际证明命题时,常把分析法与综合法结合起来使用,称为分析综合法,其结构特点是:根据条件的结构特点去转化结论,得到中间结论Q;根据结论的结构特点去转化条件,得到中间结论P;若由P可推出Q,即可得证.

设a,b是相异的正数,求证:关于x的一元二次方程(a2+b2)x2+4abx+2ab=0没有实数根. 只需证△<0即可. ∵△=(4ab)2-4(a2+b2)·2ab =16a2b2-8a3b-8b3a=8ab(2ab-a2-b2) =-8ab(a2-2ab+b2)=-8ab(a-b)2. ∵a、b是相异的正数,

∴ab>0,(a-b)2>0,∴-8ab(a-b)2<0, ∴该一元二次方程没有实数根.

[点评] 本题主要考查了三角函数与不等式证明的综合应用,题目中的条件与结论之间的关系不明显,因此可以用分析法挖掘题目中的隐含条件,在证明过程中注意分析法的格式与步骤. 对于与三角函数有关的证明题,在证明过程中注意角的取值范围及三角恒等变形公式的灵活应用.

[辨析] 当n为偶数时,an-bn和an-1-bn-1不一定同号,这里忽略了在题设条件a+b>0的情况下,应分a>0且b>0和a,b有一个为负值两种情况加以讨论.

[答案] D

[答案] B [解析] ∵a、b、c∈R,∴a2+b2≥2ab, b2+c2≥2bc,a2+c2≥2ac, ∴a2+b2+c2≥ab+bc+ac=1 又(a+b+c)2=a2+b2+c2+2ab+2bc+2ac =a2+b2+c2+2≥3.

3.下面叙述正确的是 (  ) A.综合法、分析法是直接证明的方法 B.综合法是直接证法,分析法是间接证法 C.综合法、分析法所用语气都是肯定的 D.综合法、分析法所用语气都是假定的 [答案] A [解析] 在分析法中的语气即有肯定又有否定两种证明方法均是直接证明.

4.A、B为△ABC的内角,∠A>∠B是sinA>sinB的 (  ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 [答案] C

[答案] 9

6.函数y=f(x)在(0,2)上是增函数,y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是______. [解析] y=f(x+2)是偶函数,则x=2是f(x)的对称轴,又f(x)在(0,2)上为增函数, ∴f(1)<f(1.5)=f(2.5),f(3.5)=f(0.5)<f(1), ∴f(3.5)<f(1)<f(2.5)