【本著作除另有註明外,採取創用CC「姓名標示-非商業性-相同方式分享」臺灣3.0版授權釋出】 National Taiwan University Material Mechanics Chapter Two Axially Loaded Members 2014 Summer 國立臺灣大學土木工程學系 黃尹男 教授 【本著作除另有註明外,採取創用CC「姓名標示-非商業性-相同方式分享」臺灣3.0版授權釋出】 1
受軸力桿件 Axially Loaded Members 第一節 Introduction 第二節 Changes in Lengths under Uniform Conditions 第三節 Changes in Lengths under Non-uniform Conditions 第四節 Statically Indeterminate Structures 第五節 Thermal Stresses and Misfits
Changes in Lengths under Uniform Conditions 前情提要 Changes in Lengths under Uniform Conditions [材力小語] 背不出這條公式別說你讀過材力
Changes in Lengths under Non-uniform Conditions 第三節 Changes in Lengths under Non-uniform Conditions
Changes in Lengths under Non-uniform Conditions P L Changes in Lengths under Non-uniform Conditions How about this? P L/2 2P A B C
Changes in Lengths under Non-uniform Conditions And, how’s about it !? f (x) P L dx x Changes in Lengths under Non-uniform Conditions f(x) ~ intensity of distributed force [ f ] = F / L, force per unit length
Changes in Lengths under Non-uniform Conditions Now consider an differential element of length dx f (x) P(x) x dx Changes in Lengths under Non-uniform Conditions The elongation of the differential element may be obtained as…
Changes in Lengths under Non-uniform Conditions Now consider an differential element of length dx f (x) P(x) x dx Changes in Lengths under Non-uniform Conditions The elongation of the entire bar is then obtained by integrating over the length
Changes in Lengths under Non-uniform Conditions 重點回顧 Changes in Lengths under Non-uniform Conditions [材力小語] 關鍵在於「先切割,再積分」
版權聲明 5 6 頁碼 作品 版權圖示 來源/作者 1-10 7-8 [李星慧_2014 . 7. _高雄攝影作品] 此圖經同意已進行藍階修改。 您如需利用本作品,請另行向權利人取得授權。 5 國立交通大學機械工程系 鄭文雅 教授,本作品以創用 CC BY-NC-SA 臺灣 3.0 版授權釋出。 6 7-8 版權聲明