Provider Continuity in Taiwan 台灣醫療照護持續性

Slides:



Advertisements
Similar presentations
期末考试作文讲解 % 的同学赞成住校 30% 的学生反对住校 1. 有利于培养我们良好的学 习和生活习惯; 1. 学生住校不利于了解外 界信息; 2 可与老师及同学充分交流有 利于共同进步。 2. 和家人交流少。 在寄宿制高中,大部分学生住校,但仍有一部分学生选 择走读。你校就就此开展了一次问卷调查,主题为.
Advertisements

應用聯合分析法探討婦女對子宮頸癌篩檢方案之偏 好 子宮頸癌是國人常見之婦女癌症,民國 95 年的發生率為台灣婦女癌症之第二 位,死亡率為第六位。許多研究證實子宮頸癌篩檢為預防子宮頸癌最有效之 方法,我國婦女的子宮頸癌篩檢率低是導致子宮頸癌發生率及死亡率偏高的 重要原因,顯示如何提升篩檢率為一重要議題。因此本研究擬瞭解婦女受檢.
基質金屬蛋白 ?-2,-9, 及其組織抑制劑 -1,-2 基因多形性與泌尿道上皮癌之 相關研究 泌尿道上皮癌中以膀胱癌為最常見的癌症,膀胱癌的研究顯示,基質金屬蛋白酶( matrix melloproteinase, MMPs )家 族與腫瘤細胞的增生、血管生成及進展有密切的相關,其中又以 MMP-2.
考研英语复试 口语准备 考研英语口语复试. 考研英语复试 口语准备 服装 谦虚、微笑、自信 态度积极 乐观沉稳.
組織氣候與工作投入關係之研究 - 以某醫學中心暨委託經營管理醫院為例 中文摘要 本研究主要目的在探討某醫學中心暨二家委託經營管理醫院之組織氣候及員工工作投入之程度,及 比較不同個人屬性與醫院屬性之組織氣候與工作投入之差異,採橫斷式調查法、用多階段隨機抽樣 方式,以某醫學中心暨委託經營管理的二家醫院員工為研究對象,進行結構式問卷調查,收集時間.
胸痛中心的时间流程管理 上海胸科医院 方唯一.
《互联网运营管理》系列课程 觉浅网 荣誉出品
Ch7 人口成長與一胎化家庭 國經所 袁國軒 潘鵬升.
全科医师与专科医师的 临床诊疗思维 温州医学院附属第一医院 潘景业.
統合分析臨床試驗實之文獻品質評分:以針灸療法之統合分析為例
Presented By: 王信傑 Ricky Wang Date:2010/10/6
梁家康 香港生殖醫學專科醫生 香港生殖醫學會會長
关注降压质量 河北省人民医院 郭艺芳.
Neurology Department, Shuang-Ho Hospital
How to Use SPSS in Biomedical Data analysis
宏 观 经 济 学 N.Gregory Mankiw 上海杉达学院.
机械及生物主动脉瓣 --病人选择及手术方式实施 第四军医大学西京医院心血管外科 易定华,俞世强,刘金成,金振晓等 2008年12月 上海.
重庆第三军医大学大坪医院心内科 曾春雨、杨成明
實證醫學專題報告 服用綜合維他命,未來發生心血管疾病的機率有多少?
Enhancing the education management on Asthma changing the model of medical service Peking University Renmin Hospital He Quanying.
应如何将神的话语大声读出来会众才能真正的听见!
醫院自製天然養生灌食配方的營養成份探討 管灌飲食是醫院及長期照護體系中常見的一種飲食方式,自從1970年以來,商業配方因方便使用及人力節省已然成為主流,但其雖可提供符合基本營養素建議量,但卻由於不含天然食材,因而未能涵蓋近年來被一一發現存在植物界,對人體健康極為重要的化合物,簡稱植化素(phytochemicals)。臺北市立聯合醫院營養部,於2005年起陸續推出以營養豐富且多樣化之天然食材為主的自製天然養生灌食配方(養生配方)及蔬果精力湯,供應予住院及護理之家個案使用。為暸解配方在經過烹調、攪打、過濾等
5α还原酶抑制剂---保列治 对前列腺体积较大和/或血清PSA水平较高的患者治疗效果更好 连续药物治疗6年疗效持续稳定
二維品質模式與麻醉前訪視滿意度 中文摘要 麻醉前訪視,是麻醉醫護人員對病患提供麻醉相關資訊與服務,並建立良好醫病關係的第一次接觸。本研究目的是以Kano‘s 二維品質模式,設計病患滿意度問卷,探討麻醉前訪視內容與病患滿意度之關係,以期分析關鍵品質要素為何,作為提高病患對醫療滿意度之參考。 本研究於台灣北部某醫學中心,通過該院人體試驗委員會審查後進行。對象為婦科排程手術住院病患,其中實驗組共107位病患,在麻醉醫師訪視之前,安排先觀看麻醉流程衛教影片;另外對照組111位病患,則未提供衛教影片。問卷於麻醉醫師
Physician Financial Incentives and Cesarean Section Delivery
黄 热 病 YELLOW FEVER 上海出入境检验检疫局
雅思大作文的结构 Presented by: 总统秘书王富贵.
B型肝炎帶原之肝細胞癌患者接受肝動脈栓塞治療後血液中DNA之定量分析
红曲的研究与发展.
水飛薊 (Silymarin)對高血糖症之影響
分析抗焦慮劑/安眠劑之使用的影響因子在重度憂鬱症及廣泛性焦慮症病人和一般大眾的處方形態
探討強迫症患者之焦慮、憂鬱症狀與自殺意念之相關
上皮生長因子接受器-1, -2基因多形性與泌尿道上皮癌之相關研究
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
Chaoping Li, Zhejiang University
摘要的开头: The passage mainly tells us sth.
Academic Year TFC EFL Data Collection Outline 学年美丽中国英语测试数据收集概述
黃俊銘 葉俊杰 陳德鴻 許士超 許家豪 楊宏仁 楊美都 鄭隆賓
题目 第一作者1,2,第二作者1,3, 及第三作者等 1,4* 1,大学,部门,城市
What water is more suitable for nurturing the goldfish
Thinking of Instrumentation Survivability Under Severe Accident
Population proportion and sample proportion
Descriptive statistics
International Conference ITIE2010: Inspiration from Best Practices
實證醫學 嘉義基督教醫院 外科部 黃國倉醫師
次数依变量模型 (Models for Count Outcomes)
The Empirical Study on the Correlation between Equity Incentive and Enterprise Performance for Listed Companies 上市公司股权激励与企业绩效相关性的实证研究 汇报人:白欣蓉 学 号:
Elderly Suicide in Hong Kong 香港長者的自殺状况研究
加州協調護理計畫 洛杉磯縣.
超声乳化白内障吸除折叠式人工晶状体植入治疗闭角型青光眼合并白内障的临床观察 Clinical study on the management of angle-closure glaucoma with cataract by phacoemulsification with foldable posterior.
Journal Citation Reports® 期刊引文分析報告的使用和檢索
Securing the appendiceal stump without clip is safe
The role of leverage in cross-border mergers and acquisitions
Interval Estimation區間估計
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
實證醫學常用資源及檢索 策略介紹 林愉珊 典藏閱覽組 國立陽明大學圖書館 民國98年5月11日.
手部衛生推動經驗分享 新光醫院 感染管制小組 謝怡然 感管師
第十五课:在医院看病.
Guide to a successful PowerPoint design – simple is best
预立医疗照护计划-在医疗护理活动中的植入
True friendship is like sound health;
2008 TIME USE SURVEY IN CHINA
高考应试作文写作训练 5. 正反观点对比.
李樹強醫生 香港腔內微創泌尿外科學會主席 陳偉希醫生 香港腔內微創泌尿外科學會榮譽秘書 彭嘉麗小姐 香港大學民意研究計劃統籌
An organizational learning approach to information systems development
國立東華大學課程設計與潛能開發學系張德勝
Resources Planning for Applied Research
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Gaussian Process Ruohua Shi Meeting
國際理事的角色 講師: 年指派理事 G L T 地 區 領 導 人 江達隆 博士.
Presentation transcript:

Provider Continuity in Taiwan 台灣醫療照護持續性 蒲正筠 18.03.2019 國立中正大學

蒲正筠 Christy Pu Institutes Degree Department Period National Yang-Ming University (Taiwan) PhD Public Health 09/2005~06/2008 University of Oxford (UK) MSc Economics 08/2002~07/2003 University of the West Indies (Trinidad) BSc 08/1999~07/2002 現職 國立陽明大學公共衛生研究所 教授 國立陽明大學 副學務長 國立陽明大學公共衛生研究所政策法律組召集人 研究興趣 病患行為 醫療費用與自費醫療 醫療會計帳

何謂照護持續性? Continuity of Care COC (照護持續性) has many definitions/aspects. 泛指病患和醫生之間的關係,而非針對特定疾病。 ‘Continuous caring relationship’ with an identified health care professional. Can also mean “health care is provided for a person in a coordinated manner”. 分為三大類: (1) 資訊持續 Information continuity, (2) 管理持續 Management continuity, (3) 關係持續 Relational/provider continuity

COC在有「基層醫療」的國家是什麼意思? 病患接受到協調性且為間斷的醫療服務 有明確轉診制度,所以初級轉次級會(要)有好的協調 更好的醫病關係 病歷(病史)不中斷 、不會開錯藥 醫師因為被病患信賴,所以更加仔細、更有責任感….

COC在「台灣」是什麼意思? 台灣是以專科醫療照護為主的國家 沒有完整的轉診制度、沒有「家庭醫生」 雲端藥歷、院所共享病歷 不同疾病本就是看不同專科醫師 全民健保造成亂逛醫院,因此「亂換醫生」確實是重要議題。 隨著big data普及,國際間發展出可量化之照護時續性指標,但是只有「關係持續」(relational continuity)的指標。

如何測量 relational (provider) continuity? the COC index (COCI): Where N is the total number of visits, nj is the number of times the patient visited a physician j; M is the total number of physicians visited. The index value ranged from 0 to 1, where 0 indicated no continuity and 1 indicated perfect continuity. Why better patient outcome? Better trust, the physician knows your family history and medical history, better communication, clinical responsibility.

無法反映 這類COC量化指標有什麼限制? 呈現 研究考量 照護持續性指標僅看得出有沒有換醫生,看不出有沒有「亂」換醫生。 換醫生不代表病患沒有受到「協調性」照護。 呈現 無法反映疾病特質、病患特質 (例如CCI共病指數) 無法反映不換醫生是因為有良好關係或是其他因素 (例如當地只有那位醫生) 無法反映 研究上也需要考量reverse causality (因為治不好所以換醫生) 其他confounder: 供給還是需求因素? 研究考量

健保資料庫 Claims data/Administrative data 兩百萬歸人檔 全人口檔 所有健保給付的醫療服務 就醫日期、費用、疾病診斷、用藥、手術、 醫院、醫師…等 病患承保資料、醫院資料 ICD 9/10 (2000-2015年採ICD9;2016年後採ICD10) 可串自己的問卷

CY Pu*, YJ Chou (2016). The Impact of Continuity of Care on Emergency Room Use in a Healthcare System without Referral Management: An Instrumental Variable Approach. Annals of Epidemiology; 26(3):183-8 利用工具變項 探討在一個無轉診制度體系下,COC對ER的影響

Background Lower avoidable hospitalization Lower emergency room use (avoidable or unavoidable) More preventive care Lower medical costs Better adherence Higher satisfaction A few studies found good COC has no effect. Referral system(?): it is unreasonable to expect patients to visit the same physician for different diseases

Background Why COC may be endogenous? Personal traits Reverse outcome Some other unobserved confounders Objective: to test whether COC prevents emergency room use in a healthcare system without referral management, using an instrumental variable (IV) approach. Effects? Increase or decrease? Hypertension and type II diabetes.

Data and Methods IV: average continuity within a family of the same diseases. Similar health-care-seeking behavior, families share beliefs regarding health and behaviors related to illness. Family members’ health-care-seeking behavior do not directly affect whether a person visits the ER. Previous studies have used family member’s disease status as IV for self disease status. Close friend’s health behavior as IV for self health behavior. Ettner (1996), Xu (2002)  Regular doctor and preventive use. IV=length of residency.

Data and Methods The NHI claims data enabled us to determine whether a person has family members by determining whether the person has or is a dependent. Partial family member. A hypertension(diabetes) patient had a valid instrumented COC score if he or she had at least one family member with hypertension (diabetes) within the same year (averaged, excluding the person’s own COC score). 23 million NHI data (2008~2009). Excluded: <20 years, had <3 outpatient visits. Outcome variable: ER in 2009 (one of the ICD codes being hypertension/diabetes) Model: IV-Probit, COC treated as a continuous endogenous variable.

Tsai HY, YJ Chou, CY Pu* (2015) Continuity of Care Trajectories and Emergency Room Use among Patients with Diabetes. International Journal of Public Health;60(4):505-13. 糖尿病患COC對ER之軌跡分析

Background For all durations of the disease? A person may spend considerable time seeking the most suitable doctor before undertaking the long-term treatment of the disease. Studies found COC = patient satisfaction, and COC per se may be irrelevant to patient outcome (Guthrie et al, 2000) Two US studies: many patients considered another physician before choosing their current physician (Harris 2003, Tu et al 2008). The benefits of seeking the most suitable doctor by sacrificing care continuity are unknown.

Methods Data: 2005 NHI a million cohort. Newly diagnosed diabetes patient: ICD-9-CM 250.xx in 2005  2 outpatient + prescription in 2005, or 1 inpatient with main diagnose being 250.xx + prescription Outcome variable: the frequency of ER visits that occurred in the final 2 years of the 6-year follow-up period (2010 and 2011) Exclusion criteria: Dead prior to 2011, had less than 5 diabetes outpatient visits during 2006~2011. COCI: Moving average: (1-5)(2-6)(3-7)………. DM-outpatient: ICD-9-CM 250.xx +prescription

Model Trajectory analysis (trajectory assignment): to estimate a discrete mixture model for longitudinal data grouping by using censored normal distribution. Specifying different functional form model selection based on Bayesian Information Criteria (BIC) Model controlled for: Age, sex, insurable income, area, Charlson comorbidity, and diabetes severity (DCSI), level of institute for first visits. And then: Negative binominal models, outcome variable=number of ER visits

Results

Discussion Diabetic patients have different COC trajectories, and these trajectories have different patient outcome. Some plausible explanations: High maintainers have other unmeasured good health behavior. Those who found suitable physicians are less likely to switch. The first visit may or may not be pure luck. High COC per se has good effect, regardless of whether physician was suitable.

CS Hsu, YJ Chou, CY Pu* (2016). The Effect of Continuity of Care on Emergency Room Use for Diabetic Patients Varies by Disease Severity. Journal of Epidemiology, 26(8): 413–419. 照護持續性之效果是否受疾病嚴重度影響?

Background Does the positive effect of COC depends on the level of disease severity? Severity of disease and patients’ awareness of this severity predicts the patients’ treatment behavior (DiMatteo et al, 2007) For diabetic patients, treatment effects depend on severity and comorbidity (Gebhardt, 2013). After controlling for severity, there is no association between COC and improved monitoring for diabetic patients (Gill, 2003)

Methods Data: 2005 NHI a million cohort. Newly diagnosed diabetes patient: ICD-9-CM 250.xx in 2005  2 outpatient + prescription in 2005, or 1 inpatient with main diagnose being 250.xx + prescription Outcome variable: the frequency of ER visits each year (all ER and DM-specific ER) Diabetic severity: Diabetes Complications Severity Index (DCSI) A measure of the number and type of diabetes complications. These complications include retinopathy, nephropathy, neuropathy, cerebrovascular disease, cardiovascular disease, peripheral vascular disease, and metabolic disease (Young, et al 2008) .

Model Model: negative binominal model estimated using generalized estimation equations Included the “no-index” group (DM-outpatient<3) Several interactions: Age*COC Sex*COC DCSI*COC Charlson comorbidity*COC

Results

Discussion COC has harmful effect in addition to the severity effect when severity level reaches a certain level (DCSI ≥ 2 in this study) At a non-severe stage, patients can enjoy the positive outcomes because of less disruption. As the disease severity increases, the treatment or self-disease management may outweigh the importance of COC. However, COC is more beneficial for patients with higher comorbidity. Great knowledge on chronic disease management? The “No-index” group actually has best outcome. Actual adherence, first prescription was inappropriate.

GY Kuo, YJ Chou, CY Pu* (2017). Effect of continuity of care on drug-drug-interaction. Medical Care. 55(8):744-751 照護持續性與開錯藥(藥物交互作用)

Background Pharmacologic development has provided physicians with a growing number of strategies for countering various diseases. Before PharmaCloud was truly effective, do patients receive multiple drugs with interactions? Drug-drug interactions (DDIs) are a major category of adverse drug reactions. DDIs occur when a patient is prescribed >=2 drugs that have negative interaction effects. Elderly: comorbidity is common Objective: To evaluate whether patients with higher physician and site COC levels are less likely than those with lower levels to be prescribed drugs with known DDIs and whether this effect varies depending on comorbidity scores.

Methods DDI: the Phansalkar list which was formulated by a panel comprising experts on different aspects of the drug prescription system. Fifteen DDI types were considered according to the strict criteria established by these experts. Phansalkar S, Desai AA, Bell D, et al. High-priority drug-drug interactions for use in electronic health records. J Am Med Inform Assoc 2012,19:735-743.

Methods(con’t) CCI: The CCI categories are calculated on the basis of 17 disease categories: diabetes with diabetic complications, congestive heart failure, peripheral vascular disease, chronic pulmonary disease, mild and severe liver disease, myocardial infarction, solid tumor with or without metastasis, peptic ulcer disease, cerebrovascular disease, hemiplegia, renal disease, leukemia, lymphoma, metastatic tumors, and acquired immunodeficiency syndrome.

Methods(con’t) 4 observation intervals—1, 2, 4, and 9 years. People were included only if they remained alive throughout an entire observation interval. For example, if the observation interval was 1 year, only people surviving 1 year after the baseline were considered. Their COC and DDIs were then analyzed in that 1-year interval. The 2013 data are the most recent data available, representing events occurring 9 years from the baseline year.

Methods(con’t) Negative binomial regression. Incidence rate ratios (IRRs) were presented. DDIs were considered in the model as an actual count number. To account for the possibility that the level of COC is endogenous (ie, patients select themselves into different COC levels), we used the inverse probability of treatment weightings, which were estimated using a propensity score to balance the observed characteristics among different COC values. Age, sex, average number of medications prescribed, hospitalization frequency, outpatient site choice, CCI, and NHI enrollment category.

What’s next? Using NHI data can only tell so many stories…

Provider COC in pediatrics Provider continuity of care (COC) is closely related to patient outcome in pediatrics. Overwhelming studies have indicated that high COC leads to better patient outcome in pediatrics. Do parents know this? If they do, are they willing to make efforts to maintain good COC for their children?

Survey A cross-sectional survey was conducted between August 2017 and February 2018 across 4 hospitals in Taiwan.

Willingness to pay (money and time)

Self-reported reasons for changing pediatric physicians.

換醫生與跟對醫生? 持續地跟錯醫生或許更糟… Volume-outcome 已經有研究指出之間physician volume 及patient outcome之 因果關係 在眼科領域,有研究提出白內障手術量越多的眼科醫生 發 生術後不良事件的機率越低。 此外,也有學者探討volume-outcome relationship也出現在 疾病檢測,如Myocardial infarction(MI)或是乳癌的檢測。

研究目的 探討眼科醫生的服務量與照護持續性對於青光眼的檢測是否存在交互 作用。 **Specific Questions 好的照護持續性是否會有較高的檢測率? 高COC代表好的physician-patient relationship,且因經常回診而有追蹤 檢查 上述的COC效果(好的COC有好的patient outcome)是否會因醫師服務量 而有不同?

Study Design Nested Case-control Study Study period: 2007 - 2016 (Files: Health01全民健保處方及治療明細檔_門急診, Health04全民健保處方及治療醫令明細檔_門急診, Health07全民健保承保檔, Health81全民健保特約醫事機構資料檔) Data source: Taiwan National Health Insurance Research database. Confirmed glaucoma diagnosis ICD9/10CM 365.x, 364.22/H40.x, H42.x + Drug use at least 0.5-1 year (健保代碼) Study Population gender, age, socioeconomic status, continuity of care index, outpatient department visits, location, ownership, accreditation level (Kooner, AlBdoor, Cho, & Adams-Huet, 2008) Independent Variables

Flow Chart New case diagnosis of glaucoma With ICD code and drug use Study population N= 256,268 Approximately incidence rate: 11 ‰ NHIRD Whole population from 2007-2016 Exclusion: Angle-closure glaucoma 365.2x/H40.2x Uveitis 364.3/H20.9 Ocular trauma 365.65/H40.30x Vitreous hemorrhage 379.23/H43.13 Diabetic Retinopathy 362.01/E11.319 Retinal Vessel Occlusion 362.3x/H43.13 Any eyeball surgery 2007 new case(cannot trace back) Patients under 20 years old Subjects had missing data Early detection N= 256,147 Late detection N=121 Good Continuity of care Poor Continuity of care High Volume Low Volume Index date Continuity of care 1 year Poor outcome? Time from first confirmed diagnosis to use more than 3 or 4 medications or surgery or a poor outcome within one year. (Kooner, AlBdoor, Cho, & Adams-Huet, 2008)

Definition of Variables Outpatient visits Continuity of care index Ophthalmologist volume Interaction Frequency of ophthalmology OPD visit. Total number of visits 1 year prior to index date. Use continuity of care index to calculate and divide into 2 groups, good and poor COC. (visits that over 2 times) Analyze in volume of total patients, total glaucoma patients, and glaucoma patients as percentage of total patients. Interactions of above variables **Index date: The date that patient was detected as confirmed glaucoma.

Socioeconomic Status (NTD) Table 1. Characteristics of total observations Total Early detection (%) Late detection (%) N=256,268 N=256,147 N=121 Gender male 132,391(51.66) 132331 51.66 60 49.59 female 121,877(47.56) 121816 47.56 61 50.41 undefined 2,000(0.78) 2000 0.78 - Age AVG(SD) 56.11(16.46) 56.10(16.45) 63.4(17.21) 20-45 68358(26.67) 68342 26.68 16 13.22 46-65 109822(42.85) 109772 42.86 50 41.32 >65 78088(30.47) 78033 30.46 55 45.45 Socioeconomic Status (NTD) <=22800 143376(55.95) 143284 55.94 92 76.03 22801-45800 71237(27.8) 71215 27.8 22 18.18 >45801 41655(16.25) 41648 16.26 7 5.79 City North 130972(51.11) 130941 51.12 31 25.62 Central 53023(20.69) 52979 20.68 44 36.36 South 60107(23.45) 60072 23.45 35 28.93 East 12166(4.75) 12155 4.75 11 9.09

o Table 1. Characteristics of total observations (continued) Total Early detection (%) Late detection (%) N=256,268 N=256,147 N=121 Continuity of Care Index Not defined 137300(53.58) 137248 53.58 52 42.98 Low 35353(13.79) 35331 13.79 22 18.18 Medium 47847(18.67) 47817 18.67 30 24.79 High 35768(13.96) 35751 13.96 17 14.05 Volume Ophthalmology 84572(33.00) 84527 33 45 37.19 87117(33.99) 87067 33.99 50 41.32 84579(33.01) 84553 33.01 26 21.49 Glaucoma 84515(32.98) 84481 32.98 34 28.1 87217(34.03) 87167 34.03 84536(32.99) 84499 32.99 37 30.58 Percentage Distribution 84506(32.98) 25 20.66 87172(34.02) 87114 34.01 58 47.93 84590(33.01) 84552 38 31.4 Hospital Location North 128656(50.20) 128624 50.21 32 26.45 Central 53079(20.71) 53036 20.71 43 35.54 South 62216(24.28) 62181 24.28 35 28.93 East 12317(4.81) 12306 4.8 11 9.09 Ownership Public 39286(15.33) 39257 15.33 29 23.97 Private 216982(84.67) 216890 84.67 92 76.03 Accreditation Level Medical center 52333(20.42) 52312 20.42 21 17.36 Regional hospital 45368(17.7) 45321 17.69 47 38.84 District hospital 21299(8.31) 21287 8.31 12 9.92 Clinic 137268(53.56) 137227 53.57 41 33.88 o

結語 照護持續性的效果或許真的存在。 持續努力證明事實上不存在。 因果關係仍是重點。

Thank You