Presentation is loading. Please wait.

Presentation is loading. Please wait.

第三章 微积分学的创始人 : 德国数学家 Leibniz 微分学 导数描述函数变化快慢 --- 变化率 --- 切线 斜率 --- 相对误差 微分 描述函数变化程度 --- 函数值的增量 --- 绝对误差 都是描述物质运动的工具 ( 从微观上研究函数 ) 导数与微分 导数思想最早由法国 数学家 Fermat.

Similar presentations


Presentation on theme: "第三章 微积分学的创始人 : 德国数学家 Leibniz 微分学 导数描述函数变化快慢 --- 变化率 --- 切线 斜率 --- 相对误差 微分 描述函数变化程度 --- 函数值的增量 --- 绝对误差 都是描述物质运动的工具 ( 从微观上研究函数 ) 导数与微分 导数思想最早由法国 数学家 Fermat."— Presentation transcript:

1 第三章 微积分学的创始人 : 德国数学家 Leibniz 微分学 导数描述函数变化快慢 --- 变化率 --- 切线 斜率 --- 相对误差 微分 描述函数变化程度 --- 函数值的增量 --- 绝对误差 都是描述物质运动的工具 ( 从微观上研究函数 ) 导数与微分 导数思想最早由法国 数学家 Fermat 在研究 极值问题中提出. 英国数学家 Newton

2 一、微分概念 二、微分的基本公式与运算法则 三、微分在近似计算中的应用 第4节第4节 微分

3 一、微分的概念 引例 : 一块正方形金属薄片受温度变化的影响, 问此薄片面积改变了多少 ? 设薄片边长为 x, 面积为 A, 则 面积的增量为 关于△ x 的 线性主部 高阶无穷小 时为 故 称为函数在 的微分 当 x 在当 x 在 取 得增量 时,时, 变到 边长由 其

4 的微分, 定义 : 若函数 在点 的增量可表示为 ( A 为不依赖于△ x 的常数 ) 则称函数 而 称为 记作 即 定理 : 函数 在点 可微的充要条件是 即 在点 可微,

5 微分的几何意义 当 很小时, 则有 从而 导数也叫作微商 切线纵坐标的增量 自变量的微分, 记作 记

6 例如, 基本初等函数的微分公式 ( 见 P115-116) 又如,

7 二、 微分运算法则 设 u(x), v(x) 均可微, 则 (C 为常数 ) 分别可微, 的微分为 微分形式不变 5. 复合函数的微分 则复合函数

8 例 1. 求 解:解:

9 例 2. 设 求 解 : 利用一阶微分形式不变性, 有 例 3. 在下列括号中填入适当的函数使等式成立 : 说明 : 上述微分的反问题是不定积分要研究的内容. 注意 : 数学中的反问题往往出现多值性.

10 三、 微分在近似计算中的应用 当很小时, 使用原则 : 得近似等式 :

11 特别当 很小时, 常用近似公式 : 很小 ) 证明 : 令 得

12 的近似值. 解 : 设 取 则 例 3. 求

13 的近似值. 解:解: 例 4. 计算

14 例 5. 有一批半径为 1cm 的球, 为了提高球面的光洁度, 解 : 已知球体体积为 镀铜体积为 V 在时体积的增量 因此每只球需用铜约为 ( g ) 用铜多少克. 估计一下, 每只球需 要镀上一层铜, 厚度定为 0.01cm,

15 内容小结 1. 微分概念 微分的定义及几何意义 可导 可微 2. 微分运算法则 微分形式不变性 : ( u 是自变量或中间变量 ) 3. 微分的应用 近似计算 估计误差

16 书面作业 P120-121 3 (1) , 4(1)(3)(5) , 5


Download ppt "第三章 微积分学的创始人 : 德国数学家 Leibniz 微分学 导数描述函数变化快慢 --- 变化率 --- 切线 斜率 --- 相对误差 微分 描述函数变化程度 --- 函数值的增量 --- 绝对误差 都是描述物质运动的工具 ( 从微观上研究函数 ) 导数与微分 导数思想最早由法国 数学家 Fermat."

Similar presentations


Ads by Google