Presentation is loading. Please wait.

Presentation is loading. Please wait.

第六章 数字基带传输系统.

Similar presentations


Presentation on theme: "第六章 数字基带传输系统."— Presentation transcript:

1 第六章 数字基带传输系统

2 从本章起,侧重讨论数字通信的基本原理 及有关技术问题
数字基带信号及其频谱特性 基带传输的常用码型 数字基带信号传输及无码间干扰的基带传输特性 基带传输系统的抗噪声性能及眼图 部分响应系统和时域均衡

3 6.0 引言 定义: 数字通信系统:数字基带传输系统和数字频带传输系统。 意义: ●利用对称电缆构成的近程数据通信
●频带传输系统中同样存在着基带信号传输问题; ●如果把调制与解调过程看作是广义信道的一部分,则任何数字传输系统均可等效为基带传输系统。 --数字频带传输的基础。

4 6.1 数字基带信号及其频谱特性 6.1.1 数字基带信号-消息代码的电波形 Ts—码元长度、码元间隔;
注:电波形不一定是方波,以矩形脉冲组成的基带信号为例,介绍几种最基本的基带信号波形。

5 基带信号波形 1.单极性非归零波形(NRZ) 是否有直流分量 波形之间有无间隔 是否能直接提取同步信息。 抗噪性能如何
是否需要信道一端接地。

6 2 双极性非归零波形(BNRZ) 是否有直流分量 波形之间有无间隔 是否能直接提取同步信息。 抗噪性能如何 是否需要信道一端接地。

7 3 单极性归零(RZ)波形 是否有直流分量 波形之间有无间隔 是否能直接提取同步信息。 抗噪性能如何 是否需要信道一端接地。

8 4 双极性归零(BRZ)波形 是否有直流分量 波形之间有无间隔 是否能直接提取同步信息。 抗噪性能如何 是否需要信道一端接地。

9 5 差分波形(相对码波形) 利用相邻码元的电平变化传递信息。
5 差分波形(相对码波形) 利用相邻码元的电平变化传递信息。 6 多电平波形 +E -E +3E +E -E -3E

10 6.1.2 基带信号的频谱特性 目的:针对信号的谱特性,设计或选择信道,以利于信号方便通过。
对象:二进制随机脉冲序列。其中:g1(t)表示“0”码; g2(t)表示“1”码。

11 s(t)的功率谱密度Ps(ω)的求解思路:
截短信号S(t)看成是由一个稳态波V(t)和一个交变波u(t)构成。这里的所谓稳态波,即是随机信号S(t)的平均分量。 稳态分量(周期)←→离散谱 交变分量(非周期)←→连续谱

12 1.求平均分量v(t)和交变分量u(t) 先观察序列中的一个码元: 平均分量: Pg1(t)+(1-P)g2(t) 一个序列的平均分量:
交变分量: v(t)是一个周期函数——可展开成傅立叶级数,求得系数——利用周期函数功率谱与傅立叶级数系数的关系求得功率谱 u(t)是功率型的随机脉冲序列,其功率谱可以采用截短函数和统计平均的方法求得。

13 2. 求平均分量的功率谱密度 PV(ω)--离散谱
3. 求交变分量的功率谱密度 Pu(ω) --连续谱 4.数字基带信号功率谱Ps(ω)

14 结论: 二进制随机脉冲序列的功率谱Ps(f)可能包含连续谱和离散谱。连续谱总是存在的,离散谱不一定存在.连续谱→确定带宽;离散谱→有无所需频率成分。 离散谱是否存在,取决于g1(t)和g2(t)的波形及其出现的概率P。一般情况下,它也总是存在的,但对于双极性信号 g1(t) = - g2(t) = g(t) ,且概率P=1/2(等概)时,则没有离散分量。根据离散谱可以确定随机序列是否有直流分量和定时分量。

15 例6-1求单极性NRZ信号的功率谱,假定p=1/2。
其中g(t)为高度为1、宽度为Tb的全占空矩形脉冲。

16 例6-2 求双极性NRZ信号的功率谱, 假定p=1/2。
谱分量, 直流, 定时分量, 带宽 例6-2 求双极性NRZ信号的功率谱, 假定p=1/2。

17 例6-3 求单极性RZ信号的功率谱, 假定p=1/2。

18 例6-4 求双极性RZ信号的功率谱, 假定p=1/2。

19  = Ts / 2 B=? RB=?

20 单极性基带信号: 一定含有直流分量,归零码含有定时分量。 双极性基带信号: 等概时不含直流分量和定时分量。 占空比越小,占用带宽越宽。

21 6.2 基带传输的常用码型 6.2.1 选码规则 原因: (1)基带信号是代码的电表示形式。但实际中并不是所有的代码的电波形都能在信道中传输。 (2)码型---连“0”符号的代码相应的电波形,会长时间出现0电位,不利定时信息的提取。

22 1.对传输用基带信号的主要要求: 2.码型问题 3.选码规则(传输码的特征) 不但其波形,而且其码型亦应适合于在信道中传输。
信码(消息代码) → 传输码(线路码) 3.选码规则(传输码的特征) 不含直流,且低频分量尽量少;(相应的基带信号) 含有丰富的定时信息;(相应的基带信号) 传输效率要高(功率谱主瓣宽度窄); 不受信息源统计特性的影响; 具有内在的检错能力; 编译码简单。

23 6.2.2 几种常用的传输码型 1. AMI码(传号交替反转码) 编码规则:传号(1)极性交替,空号(0)不变。
{an}: AMI: 特点: (1)无直流分量和仅有小的低频分量; (2) 二电平→三电平--1B/1T码 (3)易于检错(极性交替否?); (4)编、译码简单; (5)当出现长的连0串时,不利于定时信息的提取。(作为取样脉冲,控制判决电路)

24 2.HDB3码(三阶高密度双极性码) 编码规则: (1)变成AMI码; (2)连“0”数目超过3时,将每4个连“0”化作一小节,定义为000V,且V与前一个传号同号; (3)如果两个相同的V同号,把后一个V 的第一个“0”变成B,且B与V反号, 这时再将从V和后面的传号变号, 使+1和-1交替变化,使码中+1和-1的 数目接近。

25 例如: 代码: AMI码: 加V: V V 加B: V+-1+1 B V HDB3: V是表示破坏极性交替规律的传号,V是破坏点,译码时,找到破坏点,断定V及前3个符号必是连0符号,从而恢复4个连0码,再将-1变成+1,便得到消息代码. 译成*

26 2.双相码:又称曼彻斯特(Manchester)码
编码规则: 0—01(一个周期的正负对称方波);1—10 (反向波形) 例如: 消息码: 双相码: 特点: 是否含有位定时信息; 是否有直流分量; 编译码是否简单; 缺点是什么?

27 6.3 数字基带信号传输与码间串扰 6.3.1数字基带信号传输系统的组成

28 工作原理:

29 6.3.2 基带传输系统的码间串扰 产生该误码的原因: 信道加性噪声和频率特性不理想引起的波形畸变。基带传输系统的数学模型如图所示:

30 右边第一项是确定信息ak的依据; 第二项:ak之外其他码元在抽样时刻的“贡献”,对当前码元ak的判决起着干扰的作用,称之为码间串扰值(随机); 第三项:输出噪声在抽样瞬间的值,显然是一个随机干扰。 若要获得良好性能→码间干扰和噪 声的综合影响足够小→将码干和噪 声分开考虑→ 先n(t)=0(无噪声→ 设计H(ω)→分析码干无码干 →分 析Pe

31 6.4 无码间串扰的基带传输特性 1.码间干扰产生的原因:
系统传输总特性不理想,导致前后码元的波形畸变并使前面波形出现很长的拖尾,从而对当前码元的判决造成干扰。

32 2.消除码间串扰的基本思想 在t0、Ts+ t0 、2Ts +t0码元抽样判决时刻上其它相邻码元的取值正好为0,就能消除码间串扰,如下图所示:

33 3.无码间串扰的频域条件

34 无码干的频域条件 其中Heq(ω)为等效理想低通

35 上条件称为奈奎斯特(Nyquist)第一准则
物理意义: 将H()在 轴上左右平移以2/Ts的倍数,在(-/Ts, /Ts)区间内叠加的结果应当为一直线(常数),当以1/ Ts速率传输基带信号时,无码间串扰。

36 如何判断一个系统能否实现无码间串扰传输?

37 4.无码间串扰的传输特性的设计 (1)具有理想低通特性的基带系统

38 例:用一系列冲激信号d(t)( 110…)来通过该理想LPF,则LPF的输出gR(t)形成一系列抽样函数波形。
理想低通传输特性的带宽1/2Ts称为奈奎斯特带宽,将系统无码间干扰的最高传输速率1/Ts称为奈奎斯特速率。 问若RB>1/Ts, RB<1/Ts会产生码间串扰吗?

39

40 如何判断一个系统能否实现无码间串扰传输?
方法一: 方法二:求得满足无码间串扰的最大码元速率

41 (2)具有等效理想低通特性的基带系统 (余弦滚降特性)
α =0 ---理想LPF; α =1 ---升余弦滚降特性

42 6.5 基带传输系统的抗噪声性能 本小节将研究在无码间串扰条件下,由信道噪声引起的误码率。
n(t)-加性高斯白噪声,均值为0,双边功率谱密度为n0 /2。 判决:设判决门限为Vd,则 存在两种错判:P(0/1)、 和P(1/0) -阴影面积。 判为“1”码; 判为“0”码。

43 识别点信号:双极性基带信号在识别点的电平峰值为±A ;
识别点噪声: 噪声n(t):平稳、高斯、白噪声。 均值为0,n0/2。 因GR(t)是线性的,故识别点噪声nR(t)为: 平稳、高斯、均值为0,但非白。且

44 识别点总输入: 抽样:

45 (1)发“1”错判为“0”的概率P(0/1): (2)发“0”错判为“1”的概率P(1/0):

46 最佳门限电平: 使总误码率最小的判决门限。 双极性基带信号: 若P(0)=P(1)=1/2,其最佳门限电平为0。 单极性基带信号:
最佳判决门限电平为A/2。

47 若P(1) >P(0) 若P(1) <P(0)

48 6.6 眼图--一种实验方法 眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形。
观察眼图的方法:调整示波器扫描周期,使 To=Tb 这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”。 从“眼图”上可以观察出码间串扰和噪声的影响,从而估计系统优劣程度。

49 码间串扰越大,眼图越小,且越不端正; 噪声越大,线迹越宽,越模糊。

50 眼图模型: 最佳抽样时刻 对定时误差的灵敏度 噪声容限 } 抽样失真 过零点失真 判决门限电平

51 6.7 部分响应系统与时域均衡 6.7.1 部分响应系统 为了消除码间串扰,要求把基带传输系统的总特性H(ω)设计成: 理想低通特性。
等效理想低通传输特性—升余弦频率特性 问题:能否找到一种频带利用率既高、“尾巴”衰减又大、收敛又快的传输波形呢? 部分响应波形 部分响应系统

52 部分响应系统的基本原理 Sa(x)波形具有理想矩形频谱。现将两个时间上相隔一个码元Tb的Sa(x)波形相加,则得 可见,除了在相邻t=±Tb/2的取样时刻g(t)=1外,其余的取样时刻上, g(t)具有等间隔零点。

53 显然, g(t)的频谱G(ω)限制在(-π/Tb ,π/Tb)内,且呈缓变的半余弦滤波特性。
波形g(t)的拖尾幅度与t2成反比,比由理想低通形成的h(t)衰减大,收敛也快。 如果码元传输率是1/Tb,频带利用率: 能否以码元速率1/Tb无码间干扰传输?

54 这种“干扰”是确定的,在收端可以消除掉,故仍可按1/Tb传输速率传送码元。
可见用g(t)作为传送波形,且传送速率为1/Tb时,在抽样时刻:发送码元与其前后码元相互干扰,而与其它码元不发生干扰。 这种“干扰”是确定的,在收端可以消除掉,故仍可按1/Tb传输速率传送码元。

55 设输入的二进制码元序列为{ak},ak在抽样点上的取值为+1和-1,则当发送码元ak时,接收波形g(t)在抽样时刻的取值为:
式中,ak-1表示ak前一码元在第k个时刻上的抽样值。不难看出,ck将可能有-2、0及+2三种取值。 显然,如果前一码元ak-1已经判定,则 码间串扰被利用(或者说被控制)。 问题:上述判决方法虽然在原理上是可行的,但可能会造成误码传播(差错传播)。

56 解决差错传播: 预编码:解除了码元之间的相关性 相关编码:为了得到预期的部分响应信号频谱 模2判决

57 第I类部分响应系统组成框图

58 例: ak bk bk Ck ak 判决规则:

59 6.7.2 时域均衡 ●实际的基带传输系统不可能完全满足无码干传输条件,当串扰严重时,必须对系统的传输函数进行校正,使其达到或接近无码间串扰要求的特性。 ●理论和实践表明,在基带系统中插入一种可调滤波器就可以补偿整个系统的幅频和相频特性,从而减小码间串扰的影响。这个对系统校正的过程称为均衡,实现均衡的滤波器称为均衡器。 ●均衡方式 1) 频域均衡:从频率响应考虑,使包括均衡器在内的整个系统的总传输函数满足无失真传输条件。 2)时域均衡:直接从时间响应考虑,使包括均衡器在内的整个系统的冲激响应满足无码间串扰条件。

60 基本原理

61 它实际上是由无限多个横向排列的延迟单元构成的抽头延迟线加上一些可变增益放大器组成,因此称为横向滤波器。

62 衡量均衡效果的指标(衡量准则) 峰值畸变准则和均方畸变准则。
峰值畸变D表示所有抽样时刻上得到的码间干扰最大可能值(峰值)与k=0时刻上的样值之比。 如果均衡器按最小峰值畸变准则或最小均方畸变准则来设计,则认为这时的均衡效果是最佳的。


Download ppt "第六章 数字基带传输系统."

Similar presentations


Ads by Google