Download presentation
Presentation is loading. Please wait.
1
LIFE SCIENCE TECHNOLOGIES: The Digital PCR Revolution
林俊叡 梁世融 魏晧軒 潘世璋 鄭家凱 姜智偉 楊筌凱
2
DNA雙股螺旋
3
核甘酸 核甘酸(Nucleotide)為核酸分子構成單元 核甘酸包含: 五碳糖(去氧核糖, deoxyribose)
磷酸基(phosphate group) 含氮鹼基之一(A、G、C、T、U)
4
DNA與RNA
5
轉錄與轉譯作用形成蛋白質
6
轉錄與轉譯作用形成蛋白質 PCR
7
蛋白質的結構 1.一級結構(primary structure) 2.二級結構 (secondary structure)
α螺旋(α-helix) β摺疊(beta sheet) 3.三級結構 (tertiary structure) 4.四級結構 (quaternary structure)
8
一級結構(primary structure)
肽或蛋白質的氨基酸序列(或殘基序列)被稱為一級結構。 一級結構上的胺基酸間可交互作用,利用醯胺鍵上的C=O鍵與胺 基形成氫鍵。
9
二級結構 (secondary structure)
多肽因連接各胺基酸的肽鍵(peptide bond)間產生氫鍵,而形成重複 出現的特殊結構: 1. α-螺旋 2. β-褶片
10
三級結構 (tertiary structure)
指已具有二級構造的多肽,因胺基酸側鏈間的交互作用而折疊扭 轉成特有的緊密立體形狀 三級結構描述這些domain的關係以及蛋白質折疊讓序列中距離遙 遠的氨基酸互相靠近的途徑,以及使其構形穩定的鍵結。
11
四級結構 (quaternary structure)
當具有生物功能的蛋白質是由兩條或兩條以上的多肽(次單元)組 成時,次單元在立體空間的相互關係 形成四級構造的優點 增加結構安定性 遺傳物質能有效利用 形成功能或活性部位 調節與協同效應
13
蛋白質之重要性 不同蛋白質所具有之獨特序列,除了蘊含千變萬化的結構之外, 也賦予其在各種生命現象中背負繁複但重要的使命,例如
基因的複製 細胞週期的調控 養分的運送 代謝反應 訊息傳導等 蛋白質透過彼此的交互作用,形成綿密的蛋白質網絡,以維持 生命體的正常運作,因此當某個蛋白質遭致先天突變或後天修 飾而失常,致使原來應有的功能減損或喪失,蛋白質網絡的失 衡,牽一髮動全身的結果,將造成細胞病變而產生疾病。
14
蛋白質變異的原因 基因變異 結構變異
15
蛋白質變異的原因 基因變異 結構變異
16
基因變異 導致蛋白質的生合成、傳輸、穩定度乃至於酵素活性受到影響, 使得原來應有之功能喪失或減損
基因變異的種類,依據現在分子層面的瞭解可分成: 基因中單一核甘酸序列的變異 基因中小片段重複序列的拷貝數目改變 一基因內插入一大段外來的DNA片段 染色體結構的變異 缺失(deletion)-一至多個DNA序列消失 反轉(inversion)-基因在染色體上的排列方式前後倒置 位移(translocation) 重複(duplication)
17
基因變異 cont 基因發生核甘酸序列的變異時,經由轉錄,這些變異的核甘酸序 列被忠實的轉錄到mRNA的核甘酸序列上,因此轉譯出的胺基酸種 類也就不同,不同的胺基酸造成蛋白質特性的改變 自閉症-患者有一種蛋白質變異,這種蛋白質原用來幫助腦細胞 經神經通路「突觸」(synapses)轉換資料, 導致患者腦細胞間的溝通程度,縮減到僅有 一般人的十分之一
18
基因變異 cont 癌症-控制調節細胞分裂的機制相關基因發生變異所造成 蠶豆症、苯酮尿症、鎌刀型貧血症-體染色體隱性遺傳疾病
A型血友病、色盲-X染色體聯鎖隱性遺傳疾病 低磷酸鹽性佝僂症-X染色體聯鎖顯性遺傳疾病 唐氏症-染色體結構變異,大多數為第21號染色體多了一條
19
蛋白質變異的原因 基因變異 結構變異
20
蛋白質結構變異 蛋白質結構本身受到構型重整(conformational rearrangement) 或錯誤折疊(misfolding)的影響,而致使蛋白質有自發性聚合 (self-association)的現象(如β-linkage),造成聚合之蛋白質 在細胞內產生組織堆積(tissue deposition)或內含體 (inclusion body) 而致病 例如常見於各大媒體報導的神經退化性疾病阿茲海默症 (Alzheimer’s disease)、巴金森氏症(Parkinson’s disease), 與為人談之色變並影響農業經濟甚巨的狂牛症(Bovine spongiform encephalopathy
21
DNA hydrogen bondings
22
Primer: A short segment of DNA sequences
Examples: Primer 1: ATTGC Primer 2: GGTGCA
23
Primer and DNA binding Examples: Primer 1: ATTGC DNA 1 : TAACGTCGATGCCTTAG Primer 2: GGTGCA DNA 2 : CCACGTTATCCGTAGCGTC
24
Primer and DNA un-binding
Primer 1: ATTGC DNA 1 : TAACGTCGATGCCTTAG 3(A-T) pairs and 2(G-C) pairs: 12 hydrogen bondings Primer 2: GGTGCA DNA 2 : CCACGTTATCCGTAGCGTC 2(A-T) pairs and 4(G-C) pairs: 16 hydrogen bondings
25
PCR: Polymerase chain reaction
26
PCR的原理與方法三
27
PCR的原理與方法四
28
Real-Time PCR
29
Real-time PCR Fluorescent reporter probe method
30
Real-time PCR due to variations in reaction kinetics,different quantities of PCR product by the plateau phase of the reaction it will be more precise to take measurements during the exponential phase
31
Advantage Reduce the experiment time more sensitive & accurate
32
Ct value The PCR cycle at which the sample reaches a fluorescent intensity above background is the Cycle Threshold or Ct making it possible to determine the starting concentration of nucleic acid
33
Digital PCR Bert Vogelstein, Kenneth W. Kinzler Proc Natil.Acad. Sci Present By 生醫電資所 姜智偉
34
Introduction Cancer Virus Genecell proliferationcancer,
Curable (minor tissue injury) curable(major tissue injury)Non-curable. Virus HIV (AIDS) with treatment Difficult to detect HIV virus. Monitor virus mutation and latent virus
35
Why we need to develop Digital PCR???
Detection small tumor cell from large amount of normal cell (Looking a needle in the haystack) Urine Stool Blood Not contamination by normal cell after amplification Absolute quantification
36
Digital PCR method
37
Special probe design Stem-loop formation
Temperature change shape change Flourescence energy was inversely proportional to 6 power of distance between two point.
38
Probe and target DNA MB-Green attach to Mutation site DNA
MB-Red attach to normal site Successful amplification Wild type PCR both MB-Red and MB- Green gives light Successful amplification of Mutation type PCR on ly MB- Red gives light
39
Dilute and PCR amplification
Try to Dilute DNA to ½ copy per well Repeat temperatrure control PCR amplification Probe detection Read the data (Red/Green ratio)
40
C-Ki-Ras mutation and R/G ratio
41
C-Ki-Ras from tumor cell
42
Stool sample for C-Ki-Ras (Colorectal cancer)
43
Characteristics of Digital PCR
Prevent contamination Dilution and Partition to ultra small molecule In situ PCR amplification in each well Absolute quantification Simply detection of Mutation/Wild type, not every Mutation type Poisson distribution Quality control Thermal cycle Special primer design
44
Video Demonstration Introduction o Digital PCR
45
Thank you
46
Comparison between Traditional PCR and Real-time PCR and Digital PCR
楊筌凱
47
Three phases of PCR
48
Detection area
49
Cycle threshold of real-time PCR
50
Digital PCR works by partitioning a sample into many individual
real-time PCR reactions, some portion of these reactions contain the target molecules(positive) while others do not (negative). The fraction of negative answers is used as reference.
Similar presentations