Presentation is loading. Please wait.

Presentation is loading. Please wait.

Becky starts here © CDISC 2011.

Similar presentations


Presentation on theme: "Becky starts here © CDISC 2011."— Presentation transcript:

1 Becky starts here © CDISC 2011

2 CDISC:加快医学研究的整体方案

3 概述 促进合作 什么是 CDISC? 使用CDISC标准的商业案例 CDISC标准/模型的简要(非技术性)介绍
前景 SHARE Healthcare Link Becky

4 促进合作

5 广义的临床或医疗研究 以患者为导向的研究,在人类受试者(或来源于人类的材料,如组织、样本和认知现象)上进行,研究人员直接与人类受试者相互作用。 流行病学和行为学研究 结果研究 健康服务研究 人类疾病、治疗干预、临床试验以及新技术发展的机制的研究 不包括使用与生命个体没有联系的人体组织的体外研究 Becky 为达到本课程的目的,也将讨论动物研究。 5

6 低效循环 医疗保健 研究 (非公开的大量)医疗信息 促进研究 研究结果告知 医疗决定 高质量医疗服务 发现新疗法 明智的决策 了解疾病
个体化用药 患者安全和隐私 公共卫生 改进的治疗 效率/降低成本 发现新疗法 了解疾病 测试/对比治疗 (CER) 效能评估 安全监测 了解反应 (基因组学、生物标记) 公共卫生/质量评价 上市后监督 低效循环 Why work with EHRs. It takes 17 years to get what we learn from research into healthcare. That’s too long! 研究结果告知 医疗决定

7 医学研究 临床护理决定 学习型的卫生保健制度 研究告知健康护理决定 仅在美国,每年在医学研究上大约花费1000亿美元,在全球范围将花费更多。
临床研究的数据要求与临床质量、安全性和有效性的用例大幅重叠。 医疗保健和临床研究需要统一的标准。 医学研究需要一个过程转换。 Becky 临床护理决定 7

8 目前的临床研究 约40-50%的试验数据统计在纸张上,共输入、再次输入或转录4-7遍,需要2-3倍的医师才能完成
约50-60% 的数据由电子系统进行收集 一般的研究所有3个不同的解决方案;许多研究所可以有12个或者更多 暗示: 研究结果转换到临床实践中出现滞后现象(约17年!) 由于管理的重担,医师可能不参加到研究中 保险公司可能最先发现安全性问题 Talk through process of using paper – copying data from medical records – into CRF – into database – have to verify…queries… Why not just use what’s in the EHR instead? 8

9 高质量临床数据之“路” (这些用于提高质量的步骤,所能预期的“副产品”,就是提高效率、降低成本。) 预先打造高质量系统 培训和教育
场所工作人员、项目小组和审阅者/稽查员 减少数据收集量 定义所需数据集并指定要求 标准化格式和程序 上市后也为数据质量作出规划 减少“处理”数据的次数 (这些用于提高质量的步骤,所能预期的“副产品”,就是提高效率、降低成本。) What can standards to do build quality in – start from the front end. Source: Assuring Data Quality and Validity in Clinical Trials for Regulatory Decision Making: Workshop Report, 2000

10 医学研究的终极目标 提高质量; 患者安全 更快获得更好的 信息 采用技术 精简流程;创新 集成与互操作性
What do you think of when you hear the word Standards? Means a lot of things – hard to define. Do you think of…

11 标准如何实现目标? 提高质量; 患者安全 更快获得更好的 信息 采用技术 精简流程;创新 集成与互操作性
The standards space in which CDISC operates touches these first two

12 什么是 CDISC?

13 CDISC不只是标准! Quality Improvement Enablers Speed Process Redesign
Workflow Integration Standards-inspired Innovation Resource Savings Example of ATM cards – standard so you can use yours anywhere in the world Example of coffee cup – standard way to describe…what you put in it is up to you. Strength through collaboration

14 CDISC使命 发展并支持全球性独立平台的数据标准,实现信息系统的互操作性,改善医疗研究和卫生保健相关领域。 As of 2004
Frank Strength through collaboration

15 愿景——医学创新 CDISC 标准 实时集成 Data Sources Regulatory Authority
Public Registries and IRBs EDC EHR CDISC 标准 实时集成 Subject Data – Enter Once for Multiple Purposes “Rolling” Warehousing, Reporting and Submissions Sponsor Frank ECG X-RAY CRO or Partner LAB Payer

16 CDISC 成立于1997年,2000年2月成为独立的、非盈利性组织。 超过260个企业会员(学术界、生物医药、服务和技术提供商等)
全球开放的、多学科、中立的、非盈利性标准开发组织(SDO) 成立于1997年,2000年2月成为独立的、非盈利性组织。 超过260个企业会员(学术界、生物医药、服务和技术提供商等) 是ISO TC 215的联络员 2001年与HL7达成协议 全球统一标准联合项目委员会成员 ANSI领导的ISO TAG成员 积极协调委员会 欧洲、日本、中国、韩国 参与者遍布60多个国家 Frank

17 通过基于共识的方法(COP-001), CDISC建立了全球行业标准,支持临床研究数据和元数据的电子采集、交换、提交和存档,改进数据质量,精简医疗和生物制药产品的开发和研究进程。
数据标准可以在CDISC网站( Frank

18 CDISC 标准开发过程 (COP-001) Stage I: Standard Definition/Team Initiation
Need for Specific Standard(s) Identified (any stakeholder) Proposal to Board of Directors (via Operations) Review per strategy, budget priorities Team Leader ID And Team Formation (multidisciplinary) (Operations) Working Plan (timelines, deliverables communication mech., resources req’d) (Team ) Approved Not Approved Stage II: Standards Development/Review/V 1.0 Release Testing Consensus (Initial) Version Harmon- ized Version Review Version Released (Production) Version 1.0 Comments addressed TLC Review Public Review External Focused Review Comments to address by team Stage III: Education & Support Respond To Comments And Questions Educational Programs (EDU, Operations) Frank Stage IV: Standards Update & Maintenance TLC Review New Released (Production) Version Annual Review of Released Version (comments, chg reqsts, tests, plans) (Team) Working Plan (timelines, deliverables, communication mech., resources req’d) (Team) Consensus (Revised) Version Harmon- ized Version Public Review as needed Optional Ex Focused Review Note: Occasional bug fix releases may be issued as needed with team review only.

19 COP-001 CDISC 标准开发过程的阶段 第一阶段:定义标准/启动团队 第三阶段:教育并支持 第四阶段:更新和维护标准
第二阶段:开发标准/审查/发布1.0版 第三阶段:教育并支持 Frank 第四阶段:更新和维护标准

20 CDISC 组织 志愿者组织和团队 技术指导委员会 CDISC 团队:任何人都可以参加 3C (CDISC协调委员会)
用户网络(区域性,通常以语言为中心) 技术指导委员会 团队领导和共同努力 监督跨重点领域和项目团队的标准的开发与实施 Frank

21 支持CDISC操作计划的组织结构 Global Operations Board Strategy TAC T L C Project
Committees: Gov FOC Strategy TAC T L C Project Teams Education and Implementation Services Financial; Legal; HR PR/Communications Technical Projects Alliances User Networks CAB CCC Frank Global Operations

22 CDISC 实施/支持策略 CDISC Strategy Operational Plan
‘Core’ Standards and CORE: Development, Harmonization, Maintenance, Enhancements (also Innovation and Exploration) CDISC Technical Roadmap CDISC Strategy Operational Plan Implementation Services: Education, Interchanges, Certification, RSPs, Communication Frank Strategy 2010 (+5y) Document Technical Roadmap Document See CDISC Website for more Information: – Standards, Education, Events, Procedure for Standards Development, Registered Solution Providers (RSP), ODM Certification, Publications….. Operational Goals 2010 22

23 2011策略主题 1) 确保医疗研究标准的存在、协调、接受和支持 2)促进并提供使用标准和标准益处的教育
3) 促进标准与电子健康记录(EHR)/健康信息技术(HIT)的整合 4) 使用CDISC标准支持数据收集和报告,注重数据汇总,实现科学调查和比较效益 5) 利用全球非营利性中立与独立的地位,与其他标准开发组织和关键利益相关团体(包括监管机构和卫生机构)建立生产合作关系。 Frank

24 Joint Initiative Council (JIC)
国际卫生保健标准全景 JIC Joint Initiative Council (JIC) CEN ISO IHTSDO HL7 CDISC GS 1 SCO SCO NCPDP ASTM ASC X12 SNOMED HITSP ANSI LOINC CCHIT NQF FHA HIMSS/RSNA MedDRA ICH ONC NIST IHE CPT AMA HHS Frank NIH FDA VHA ICD WHO NLM CDC DOD NCI CMS Home Sec DICOM caBIG US Realm

25 Frank Copyright CDISC 2009 25

26 CDISC 就是你! CDISC对你意味着什么? 2010 2001 2000 2002 2008 Becky

27 使用CDISC标准的商业案例

28 更有效地利用IT可以实现的健康福利/机遇……
“我认为CDISC将成为推动FDA向电子信息架构发展的重要力量,帮助我们实现这些机会。这将对药物评审过程产生深刻而积极的影响,使我们设计的试验节省开支,使我们了解新医疗产品的更多风险和益处。我认为通过努力达到的最重要的、也许是不朽的结果就是,为患者生活带来的十分重要和直接的影响。” ——FDA专员、医学博士Mark McClellan, 2003年9月 Becky 28

29 “证词” 我有半天时间来检查我们正考虑收购的公司的数据,并以此作出决定;幸亏是使用了CDISC格式,检查才可以如此简单。
FDA要求我们公司汇总几项研究的数据,以更好地进行审查;可是由于我们无法汇总数据,使得该疗法不能得到批准。 学术研究者不希望使用标准(认为它会抑制创新和创造力),但后来却想使用这些数据,并希望得到数据库……他们没有意识到,他们实际上也需要使用标准。 标准是实现FDA审查过程现代化的基础。 如果事后不能找到/使用临床试验的数据,那么你已经破坏了与参加实验的患者/受试者的合约。 Becky

30 CDISC 价值 CEO、研究申办者、 项目经理 问问自己,是否想: 迅速、经济地启动研究 DRF易于理解和完成
职业 为何选择CDISC? CEO、研究申办者、 项目经理 问问自己,是否想: 迅速、经济地启动研究 DRF易于理解和完成 接收高质量的数据,已经符合FDA要求的格式 试验注册、IRB、生成研究报告、发表、电子提交时,方案中一些部分可以重复使用(不用重复输入) 使你的数据和其他研究的数据易于整合 之后可以找到你的数据 合并或收购时数据已经准备就绪 可以使用以前研究的数据来改进当前/以后的研究 Becky

31 CDISC 价值 职业 为何选择CDISC? 医学作家 更加快速地写出方案和研究报告
重复使用方案中的信息,而无需重复输入,例如试验注册、研究报告、发表 团队中其他人可以自动生成访问时间表和CRF 数据管理者 更加迅速、经济地得到CRF 更加快速、有效地创建数据验证规格 更加有效地建立数据库 减少培训并改善CRA和基地之间的沟通 更快地得到更清洁的数据 减少数据问题,将更多注意力放在科学内容上 与整个研究团队建立更为有效的参与机制 Becky

32 CDISC 价值 职业 为何选择CDISC? 供应商或信息技术人员 确保你的系统可以和申办者可能使用的其他系统交换信息
能够提供基于行业标准的系统 能够使用标准库迅速对申办者的要求做出反应 统计工作者 能够更为有效地创建表格、列表和数据 能够更加容易地整合多个研究的数据 能够使你的安全分析程序标准化 其他 你想通过标准实现什么? Becky

33 你需要CDISC吗? 你在做基于方案的临床研究? 你在做注释、获取、汇总、分析、存档? 你需要高质量的数据? 你想节省时间? 你的资源有限?
你完成临床方案的时间有限? 你曾经回顾并查看旧数据以获取知识? 你需要患者和研究者? 你想从电子健康档案获得信息? 你跟踪并报告安全数据? 你向FDA提交? 你打算或曾经收购另一家公司? 你需要透明和规范? 你需要合作伙伴(CRO、技术供应商、开发伙伴、实验室)? Things standards help us do FDA Reviewers say it takes months to go through data to understand and get into a format they can use in a review. 如果你符合1-7中的任何一条,那么你需要标准。 如果你符合8-14中任何一条,那么你需要行业标准。

34 商业案例引文 “操作性标准成为共同语言,促进沟通、澄清研究设计和方案进程。与外部伙伴合作时这一点非常重要。需要清楚地传达你的期望。”
“我们相信,临床数据标准对高效、成功的医药产品开发和商业化至关重要。” “根据CDISC结构定义数据并使用标准格式的初始成本,将转化为在时间、效率、内容准确性以及分析优化利用上都值得的投资。”(FDA受访者) Becky

35 Patient participation
标准对临床研究活动的影响 Study Start-up Study Conduct Analysis/Reporting Submission Clinical Study Report ISS/ISE preparation Clinical-statistical integrated report Listings, tabulations and datasets eCTD file structure Study design Protocol development CRF development DB Structure/validation Edit Checks/validation LAB/ECG specs Site/PI Identification Site evaluation Site initiation Patient recruitment plan Critical documents IRB approvals Training of team/sites Randomization plan Test article prep Statistical analysis plan Analysis table shells Patient recruitment Data acquisition Data exchange SD verification Site monitoring/audits Transfer lab/ECG data Site audits Database QA and lock Analysis programming Initial stat tables Study closeout/archive Data analysis Safety assessment Analysis table prep Clinical assessments Report generation Value 实施权衡: 启动研究时实施标准可以创造价值 Becky Elapsed time – not resources Data management is a resource savings Assumes meeting targets for patient recruitment Patient participation + 4 months 5 months 5 months 12 months Savings with Standards 80% 40% 50% = Activities that can be streamlined with standards

36 量化标准的价值 - 周期时间(和费用)节省 - ~ 60% 70-90%
Study Conduct does not include subject participation time. ~ 60% Becky 70-90% Note: Figures are benchmarks based on aggregate data; study-specific cycle times and cost metrics will vary. Figure: K. Getz, Tufts CSDD 36

37 商业案例结果摘要 (Gartner公司- PhRMA - CDISC项目)
提高数据质量 实现数据整合,促进“知识”仓库的重复利用 改善科学、市场营销和安全监督 促进合作伙伴之间的数据交换 提供迅速交换数据的工具 促进项目团队之间的沟通 方便监管意见书和审计的审查 Becky

38 注意:每个公司都应该使用自己的时间和成本基准
研究初始阶段应用标准的计算示例 注意:每个公司都应该使用自己的时间和成本基准 Start-up Time (mos) % Savings w/ Stds Net mos saved Conduct mos w/o Subject participa-tion time*** % Svngs w/ Stds Analysis & report(mos) % Svngs w stds Total mos saved Cost Savings “Value” (Cost of Clinical Res per day) 5 (80%) x 0.8 4 (40%) x 0.4 1.6 (50%) X 0.5 2.5 8.1 Multiply time saved x actual cost of study/ month X $37,000 (Tufts loaded cost per day) ~ $9M 3.2 3 1.2 1.5 5.9 2 0.8 1.0 3.4 12 9.6 7 2.8 3.5 15.9 Your time = A Your non-subject participa-tion time (LPO->DBL) = B = C A + B + C = Y Y x cost per month Y x $37K per day Becky Go to the website if you want to do your own calculations. ***Subject participation time is excluded.

39 上述计算中所未考虑的效率和有效性 患者参与期间基地工作人员和监测效率 招募 原始医学文件溯源和随机化 安全监督
再利用(如方案、疾病人口数据、CRF/eCRF设计) 培训 改善的团队沟通 机会价值是可以使用同样人数做更多的试验。 Becky

40 PhRMA - Gartner公司- CDISC项目的关键管理信息
标准的价值远远超出过程效率。 更高质量的数据/信息 实时整合数据,如安全监控、市场营销、提交和研究设计 信息的重复使用性加强了科学性 项目团队和业务合作伙伴之间的沟通得以改善 监管审查过程更为方便 标准能够节省大量时间和金钱,特别是在研究初始阶段。 Becky

41 PhRMA - Gartner公司- CDISC项目的关键管理信息
FDA的认可很重要;仍然需要进一步的批准。 临床研究和医疗保健统一的标准是核心策略目标。 在研究基地-只需输入一次数据 精简参与研究的研究者 Becky

42 数据标准如何帮助你? 你需要解决什么问题? 标准可以带来什么好处? 实施标准有哪些潜在挑战?
Engage the attendees – break the group into smaller groups and ask them to answer those questions. Ten-15 minutes to huddle together (working together, social) When they are done – take a break - Then come back and share this. A lot of the results are going to be the same – which is good. Sometimes Frank has not done this because there was not enough time.- due to lots of upfront questions. Then you can just put these in their minds for things to think about for their companies.

43 休息 10分钟 We’re going to take a break for a few minutes so you can walk around, get a drink, check your , make a phone call. When we come back, I will introduce you to the CDISC standards.

44 CDISC标准的简要(非技术性)介绍

45 CDISC 标准 Protocol CDASH SDTM(SEND) & ADaM ODM LAB XML
Form Setup & Config Data Capture Data Mgmt Analysis Submission and/or Reporting Review Protocol CDASH SDTM(SEND) & ADaM ODM Frank LAB XML Controlled Terminology

46 相关释义 传输标准 (Amy Malla – CBER) 内容标准 (改编自Amy Malla – CBER)
提供一致的方法,在不同组织的电脑系统之间交换信息 内容标准 (改编自Amy Malla – CBER) 个人数据和概念的一致介绍与说明 数据模型 (CDISC词汇表) 没有歧义的正式声明,对项目、项目间关系、某一问题领域或使用环境中数据结构的表述。数据模型使用象征的公约表达内容,以使内容在交流时不失去本意。

47 相关释义 为什么使用元数据?它有什么价值? 数据 [FDA] (同义词:信息) 元数据(CDISC 词汇表)
通过适合交流、解释或者人类或自动化途径处理的方式,对事实、概念或说明作出的表述。 元数据(CDISC 词汇表) 描述其他数据的数据 为什么使用元数据?它有什么价值?

48 02/03/04 元数据有多重要? How important is Metadata?
Ask the Question: In this Slide: What do you think D, S and F mean? (If they guess correctly – Distance, Speed and Force – ask them what UNITS they think these are in?)

49 02 /MAR /2004 DD/MM/YY 元数据有多重要? How important is Metadata?
Ask the Question: In this Slide: What do you think D, S and F mean? (If they guess correctly – Distance, Speed and Force – ask them what UNITS they think these are in?)

50 词汇表

51 CDISC 词汇表 第一个确立了以“定义CDISC使命宣言中的每一个字”为任务范围并付诸实现的CDISC团队
1997年的使命宣言:开发……标准,支持临床试验数据的电子获取、交换、提交和存档…… 如今每年都更新词汇表,并在《应用临床试验》(12月刊)和CDISC网站上发布。 包括缩略语列表

52 词汇表

53 首字母简略词、 缩写词和 首字母

54 方案表述 Content vs. terminology vs. transport standards

55 CDISC 标准 Protocol Protocol Form Setup & Config Data Capture Data Mgmt
Analysis Submission and/or Reporting Review Protocol Frank

56 方案表述:项目范围与目标 方案表述将标识临床研究方案中的标准元素,可以进一步阐明和编辑,以方便研究设计、遵从法规、管理项目、进行试验以及在使用者和系统之间进行数据交换。 该项工作基于方案使用者的需求,使用者包括监管机构、IRB、统计人员、项目管理者、基地工作人员和临床研究信息管理任何下游系统的用户。 项目目标:为方案表述发布一个标准的、机器可读的模型,实现系统之间和相关者之间的数据交换。 PR Group April 2002

57 方案表述 3.1. 研究设计综述 This is a prospective, randomized, double-blind, double-dummy, placebo controlled, forced-titration, multicenter, parallel group trial. Stage I or II hypertensive patients, age 18 years of age or older, who meet all other inclusion and exclusion criteria and successfully complete the placebo run-in period will be randomized at the site level. 格式: 加粗、 Arial、14、标题 1 格式: Arial、14号、正文 Using a Document example (Specifically a protocol in this case), structuring information by its form is pretty easy to illustrate and understand. Structuring information by form, in a document, is dividing it by how it looks, for example the Section heading is “bolded, Arial, 14pt font or “Heading Level 1” Whereas the text below is “Arial, 14pt, Body text” …yet with this approach, the content is rather limited in its utility. Imagine the futility of searching for information by font size or heading level. We’d simply get no where. Structuring information by form is not a useful search strategy for navigating clinical trial information. Suppose we want to know whether this study is blinded? Today, we might search for keywords such as “study design” or “blind”, but then we have to do a full text search and tab through the several findings of the word “blind” until we find the one we want. Thankfully, due to ICH guidelines and our internal templates, most of our regulated documents are already standardized in form and content internally and so one might find what we are looking for because we’re familiar with our internal template or the ICH Guidelines…but can today’s computers effectively search using these guidelines? And the reality of the situation is that we often need to find information at this level of detail not for just one trial but for many, and across many documents. Today it is just not practical to search for details such as degree of blind across many protocol documents, so some of our teams have created extensive spreadsheets to help keep track of these important study design concepts across multiple trials internally. Creating and maintaining spreadsheets like this can be labor intensive and cannot always be done in a timely manner. For example, during the review of a supplemental NDA for drug that has been on the market for several years, the FDA may request that a sponsor provide data from all clinical trials that included geriatric patients with previous history of heart disease. If the sponsor is not already tracking this, this information cannot be provided without a substantial amount of manual work! TRANSITION: Clearly we need a more effective computable way to find and reuse our clinical research information. 不是很有用! Source: Cara Willoughby

58 文档示例: 通过“元”信息而结构化的信息 3.1. 研究设计综述 设盲程度 构型 疾病类型描述 受试者年龄描述
文档示例: 通过“元”信息而结构化的信息 3.1. 研究设计综述 This is a prospective, randomized, double-blind, double-dummy, placebo controlled, forced-titration, multicenter, parallel group trial. Stage I or II hypertensive patients, age 18 years of age or older, who meet all other inclusion and exclusion criteria and successfully complete the placebo run-in period will be randomized at the site level. 设盲程度 构型 疾病类型描述 受试者年龄描述 This is where structuring information by meta-information, or attributes, about content can provide a useful solution Let’s look at the same protocol section and consider what it might look like to divide up this content based on meta-information. I’ve highlighted just a few pieces of text in red to start with. The meta information that we could use to describe these content pieces might look like this. Double blind is the degree of blind. Parallel group is a kind of configuration. Stage 1 or 2 hypertensive patients is a description of the population disease. And so on….. Here we’re identifying the document parts by conceptual units! Conceptual units that are common across many protocols and not specific to this one trial. Conceptual units that are referred to often in later phases in the clinical trial lifecycle TRANSITION: We’re Building a data Layer…that can be read by tools and stored in a database. And that database contains the both the meta-information and the specific protocol content Source: Kristin O’Connor

59 文档示例: 通过“元”信息而结构化的信息 有用得多! 内容的“元”信息 内容 年龄18岁或以上 平行组试验 第一或第二期高血压患者 双盲
文档示例: 通过“元”信息而结构化的信息 内容的“元”信息 内容 受试者年龄描述 年龄18岁或以上 构型 平行组试验 疾病类型描述 第一或第二期高血压患者 设盲程度 双盲 One can readily see in this database-like view, that structure facilitates searching. With Meta-information about our protocol, we can now search for and reuse protocol information based on attributes that are common across all protocols or we can search for and reuse protocol information based on content specific to this trial or protocol. So Now if I want to find out whether this study is blinded, instead of doing a full-text keyword search, we can simply search for Degree of blind and immediately see that this trial is double-blind. Furthermore, with the right tools, we can search for degree-of-blind across several protocols and within seconds produce a reliable list of trials that are “double blind”. But it is important to remember that only if the component parts are explicitly identified (structured), can we search for information in some particular part. Bottomline is….If we do not represent structure of the information that resides within our clinical documents, we will not be able to do the things we increasingly want to do with them. Structuring clinical research content by “Meta” information is useful TRANSITION: So, to summarize…structured information is…. 有用得多!

60 方案表述标准的价值 结构化的信息,方便重复使用(试验注册、研究设计、报告) 确保符合IRB要求 方便研究团队理解要求
实现CRF创造或HER配置自动化,以支持临床研究 注意:无意于抑制研究设计的创造力或创新。

61 PRG方法 开发应该注重内容第一,实施第二 元素应该在词汇表中定义,大多数的方案元素在行业中使用多个定义
每年出版CDISC词汇表,《应用临床试验》 开始时标识核心元素集,如果需要则进一步扩充细节 初始基础 ICH E6 ——开发和组织的基础 ICH E3——术语和定义 EudraCT (EMEA) ——关键词和方案描述 具体话题 (如 IRB, SAP-E9) Clinicaltrials.gov和WHO ICTRP

62

63 CDISC 方案表述标准——开发 Clinical Trial Tracking, Study Summary (SDTM)
XML Schema Development Protocol Representation Excel Spreadsheet BRIDG Mapping; Harmonization PR V 1.0 Standard Documentation Clinical Trial Tracking, Study Summary (SDTM) Clinical Trial Registry Eligibility Criteria (most common) PR V 1.0 Q1 2010 CDISC Trial Design Part I (arms, elements, visits) CDISC Trial Design Part II Planned assessments & interventions (NCI Study Calendar) CDISC Statistical Analysis Plan PR V 1.x (2011) Other Protocol Template Sections and Attachments Copyright CDISC 2009

64 信息重复使用 提高质量和效率 SDTM CDASH CRFs ADaM Datasets Protocol Section
CRF Development Data Collection Data Analysis Report or eSubmission Info for Trial Registration Basic Info/ Trial Summary (Registration) Eligibility Criteria Study Design: Arms, Epochs Study Design: Planned Events CDASH CRFs Data Tabulation SDTM Data Statistical Analysis Plan ADaM Datasets Appendices, etc. 信息重复使用 提高质量和效率 PR Version 1.0 SDTM 64

65 临床数据获取标准协调(CDASH) Content vs. terminology vs. transport standards

66 CDISC 标准 Protocol CDASH Protocol Form Setup & Config Data Capture Data
Mgmt Analysis Submission and/or Reporting Review Protocol CDASH Frank

67 CDASH FDA 关键途径项目: 精简临床试验
建立创新高效的临床试验和改进的临床终点 45. 病例报告表标准达成共识。临床试验数据收集、分析和提交可能无效并带来不必要的花费。不同的形式和格式都用来收集临床试验信息,大部分数据以纸质形式提交给FDA。不同申办者和试验中的病例报告表的差别制造了混乱和错误的机会。病例报告表外形和感觉的标准化可以减少这些无效的情况,并帮助加快电子数据获取和提交的进程。 “Innovation/Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products”, Critical Path Opportunities List, March 2006, page L-10. 67

68 CDASH 项目快照 精简研究基地的数据收集——发布C-path Opportunity #45 延续ACRO行动 2006年10月开始
由17个组织构成的合作小组支持 16个成员构成的初始核心团队 11 个工作组 由8-40名志愿者组成 现在11个人的领导小组管理约50人构成的核心团队 开发了16(+2)个安全数据域 2008年5月合并公共审查的文档 收到来自46个公司、机构和部门的超过1800条意见。 三个ICH区域全部参加了公共评论的进程 美国 欧洲 日本 与同类的NCI CRF一致

69 Prepared by the CDISC CDASH Core and Domain Teams
2010年1.1版 改进中的UG1.0版 2011年第一季度 ODM CRF示例: 包含在UG中;2010年第四季度向成员开放 Clinical Data Acquisition Standards Harmonization: Basic Data Collection Fields for Case Report Forms Prepared by the CDISC CDASH Core and Domain Teams Revision History Date Version Summary of Changes Final Draft 1.0 NA 69

70 CDASH CRFs ODM示例: 人口统计 按照CDASH规则
Use of Controlled terminology from the point of data collection provides more transparency and traceability in the data.

71 一般性建议 最佳实践(适用于所有域名的一般建议和意见)TOC: 建议执行CDASH 创建数据收集工具推荐使用的方法
映射到SDTM并满足监管需求 使用CDISC术语收集数据 以非二义性的格式收集日期 创建数据收集工具推荐使用的方法 方法学 常见问题 建议CRF开发过程流程图 使用与SDTM相同的标识变量来完成映射

72 实验室数据模型 (LAB) Content vs. terminology vs. transport standards

73 CDISC 标准 Protocol CDASH LAB Protocol Form Setup & Config Data Capture
Mgmt Analysis Submission and/or Reporting Review Protocol CDASH Frank LAB

74 CDISC 实验室数据模型 (Lab) 主要目标 测试结果与参考范围的交换 增量与累计数据的交换 最大范围的交换类型
在单个文件里多个研究中的数据的交换 支持实验室数据的批量传输

75 CDISC Lab Model Logic

76 CDISC实验室模型的核心级别 LAB标准内容/格式可以使用CDISC ODM、HL7 V3、 HL7 V2.5、ASCII、SAS等传输
6. 测试序列(试剂盒) 记录类型 7. 样本容器 8. 小组 9. 试验 10.结果 GTP(优良传输规范) 研究 基地/研究者 受试者 访视 Content vs. terminology vs. transport standards LAB标准内容/格式可以使用CDISC ODM、HL7 V3、 HL7 V2.5、ASCII、SAS等传输

77 研究数据表格模型(SDTM) Content vs. terminology vs. transport standards

78 CDISC 标准 Protocol CDASH SDTM Protocol Form Setup & Config Data Capture
Mgmt Analysis Submission and/or Reporting Review Protocol CDASH SDTM Frank

79 没有标准的数据 Name for Subject ID is never the same Name for demography
dataset is variable??? Study #2 – dmg.xpt ID GENDER A1 Male A2 A3 Female A4 A5 Study #1 – demog.xpt Study #3 – axd222.xpt SUBJID SEX 0001 M 0002 F 0003 0004 0005 USUBID SEX 00011 00012 1 00013 00014 00015 Study #4 – dmgph.xpt PTID GENDER 0001 1 0002 0003 2 0004 0005 This slide gives an example of data that is not in a standard format and not described in a standard way. With non-standard data on paper CRFs, the FDA reviewer will have a lot of manual review to perfomr With paper the reviewer may have all the collected data, but it will take a long time to go through it, and doing any analysis on it will be a manual processThe FDA began accepting data in electronic files a few years ago However, without a standard presentation of that data, electronic data still would require a lot of manual processing It is very difficult to use non-standard data to do any sort of analysis. Consider a submission with multiple studies, and this non-standard representation of demographic data. Even if the data are in electronic format, it is still very challenging to review non-standard data. Gender or Sex, what will today's submission use? Is Sex Male or Female, M or F, 1 or 2? Adapted from slide courtesy of Armando Oliva, M.D. and Amy Malla, FDA

80 使用标准的数据 Name for demography dataset always the same! Study #2 – DM.xpt
Column Header (Variable) for Subject ID is always the same 使用标准的数据 Name for demography dataset always the same! Study #2 – DM.xpt USUBJID SEX DEF-001 M DEF-002 ABC-001 F DEF-004 DEF-005 Study #1 – DM.xpt Study #3 – DM.xpt USUBJID SEX ABC-0001 M ABC-0002 F ABC-0003 ABC-0004 ABC-0005 USUBJID SEX JKL-011 M JKL-012 F GHI-003 JKL-014 JKL-015 Study #4 – DM.xpt USUBJID SEX GHI-001 M GHI-002 GHI-003 F GHI-004 GHI-005 Looking at the same four studies we saw in Slide 13, but now in Standard format, notice the difference. Now the Reviewer is able to quickly and easily use a software tool to combine and review data across studies in a submission, and even across submissions in a data warehouse. Sex is always reported using the same terminology (codelist) Sex is always reported using the same variable name. Adapted from slide courtesy of Armando Oliva, M.D. and Amy Malla, FDA

81 SDTM基础 干预: 事件: 结果: 基于一般观察类别的结构 研究性治疗、治疗方法、受试者管理或采取的程序 每个恒定剂量/治疗间隔的记录
例如:研究药物、伴随药物 事件: 在试验中或试验前发生的、计划的研究评估之外的事件或事故 每个事件的记录 例如:病史、不良事件 结果: 从计划的评估中得出的观察 每个结果或测量的记录 例如:实验室数据、生命体征

82 SDTM基础 不分为干预、事件和结果 有特殊规则 人口统计(DM) 评论(CO) 补充限定词 RELREC 实验设计表格 受试者元素和访问表
特殊目的域、试验设计和关系 不分为干预、事件和结果 有特殊规则 人口统计(DM) 受试者数据 评论(CO) 自由文本评论 补充限定词 用于SDTM标准中未包括的数据项 RELREC 用于数据集之间的相关记录 实验设计表格 计划的治疗、计划的访问 受试者元素和访问表 受试者实际经验

83 Subject Characteristics
SDTMIG标准域—v3.1.2 Interventions Events Findings Special Purpose Con Meds Adverse Events ECG Demographics Exposure Disposition Incl/Excl Exceptions Comments Substance Use Medical History Labs Subject Elements Deviations Physical Exam Subject Visits Clinical Events Questionnaire Relationships Trial Design Subject Characteristics SUPPQUAL Vital Signs Trial Elements Subject Attributions Tables A place holder for additional subject data that does not “fit” within the other models ATSUBJ – designed to support subject level linking ATRECORD – designed to support record level linking (e.g. subject visit level, subject datetime event level, etc.) Submission Summary Information Model Model that contains information regarding the study type, title, phase, design, number of subjects, etc. RELATES A model that links/associates multiple observations within &/or across domains. EPOCH A model that contains the planned study interval of time points (e.g. “periods”, “cycles”, & “phase”) RELREC Drug Accountability Trial Arms Microbiology Spec. PK Concentrations Trial Visits Microbiology Suscept. PK Parameters Trial Incl/Excl Findings About Trial Summary 83

84 SDTM 示例—— 实验室数据(LB)——Findings

85 The only reason standard review tools can be built is because there are standard representations of the data built on CDISC standards,

86 X-axis: Days into Study
在一个步骤中通过分析血清丙氨酸转氨酶(ALT)和血清总胆红素(TBILI)评估潜在的肝损伤 Drug experience Data Adverse Event Data Concomitant Drugs Individual Patient Profile: Linkage of several data tables using the same timeline Laboratory Data X-axis: Days into Study 86

87 J Review

88 非临床数据交换标准(SEND)

89 CDISC 标准 Protocol CDASH SDTM(SEND) LAB Protocol Form Setup & Config
Data Capture Data Mgmt Analysis Submission and/or Reporting Review Protocol CDASH SDTM(SEND) Frank LAB

90 SEND SEND是对动物数据实施SDTM标准 SEND规定提交所有动物毒性研究生成的数据的域和变量
包括:单剂量和重复剂量毒性、致癌性、复现毒性、啮齿动物微核 不包括体外研究生成的数据,或者在动物身上进行的基础药理或药效研究的部分 CRADA(2002年4月)PharmQuest和CDER开发并评估基于SEND模型,用于接收、存储、审查和分析非临床(即动物毒性)数据的软件工具

91 SEND v2.3 Finding域 动物特征 耗水量 临床症状 临床病理学 器官重量 胚胎数据 观察组 药物/代谢水平 肿瘤分析 生命体征
食物消耗量 身体重量 动物分布 宏观结果 微观结果 生育力 群体特征 研究综述 啮齿动物微核

92 分析数据模型(ADaM) Content vs. terminology vs. transport standards

93 CDISC 标准 Protocol CDASH SDTM(SEND) & ADaM LAB Protocol
Form Setup & Config Data Capture Data Mgmt Analysis Submission and/or Reporting Review Protocol CDASH SDTM(SEND) & ADaM Frank LAB

94 分析数据模型:2.1版 ADaM用于统计分析和报告 描述 主要原则 标准分析变量惯例 提供关键的受试者分析文件的示例
描述具体的分析数据集的元数据 分析数据集元数据 分析变量元数据 分析结果元数据 分析数据集的 结构化文档 The ADaM team has outlined the core principles relating to analysis datasets in the ADAM Version 2.1 model. This was released in it’s final in December In this document, the key principles that pertain to all analysis datasets are outlined, as well as conventions and standard variable names for frequently used analysis variables. In addition, this model illustrates the metadata for a key file, called the subject-level analysis file. We will discuss this in more detail in a few slides. In Version 2.1, Adam also describes the metadata specific for analysis datasets. As with other models, the ADaM metadata is structured documentation that describes the analysis datasets and the associated analysis. We will review each of these types of metadata.

95 创建分析数据集的关键原则 分析数据集应该: 促进清晰、无歧义的沟通 目前可用工具即可使用 连接到电脑可读的元数据 易于分析
包括受试者层面的分析数据集,命名为ADSL 使用ADxxxxxx公约命名 拥有最佳数量的数据集从而只需较少的编程 对相同变量与SDTM保持一致 可行的情况下使用SDTM命名片段 When analysis datasets are created, ADaM requires that at a minimum, the subject-level analysis data set be created using the standard naming convention of ADSL. ADaM datasets are named using the convention ADxxxxxx – Other analysis datasets would be created depending on the complexity of the analysis and the degree of separation, if you will, from the original source SDTM data.

96 ADaM 数据集应该命名为“ADxxxxxx”
示例:分析数据集 ADaM 数据集应该命名为“ADxxxxxx” SAMPLE DATASET FOR ADSL Obs STUDYID USUBJID SAFFL ITTFL PPROTFL COMPLTFL DSREAS AGE AGEGR1 1 XX0001 0001-1 Y 30 21-35 2 0001-2 N ADVERSE EVENT 38 36-50 SAMPLE DATASET FOR ADSL (continued) Obs AGEGR1N SEX RACE RACEN TRT01P TRT01PN HEIGHTBL WEIGHTBL BMIBL 1 2 F WHITE DRUG A 170 63.5 21.97 3 M ASIAN 4 PLACEBO 183 86.2 25.74 This slides shows a very abbreviated example of an analysis dataset: Here USUBJID is brought in directly from SDTM but the treatment variable is specific to ADaM and is called TRTP (for planned treatment). This variable may or may not be identical to the SDTM ARM variable but having the ADaM treatment variable named in a consistent way across all analysis datasets helps the reviewer by not having to remember whether they are looking for a variable called ARM or TRTP. ADSL is the Subject Level data, and is the only fixed name for a dataset with fixed content in ADaM. SDTM 变量 没有变化 ADaM 疗法变量

97 SDTM数据集: ADaM数据集: FDA评审时两个都需要! 为什么使用SDTM和ADaM数据集? 临床试验中的观察 用于医务主任安全评价
如何收集数据 ADaM数据集: 经过调整包含更多信息(派生变量、标识、评论等) 分析时如何使用数据 The primary purpose of SDTM is to provide a structured and well defined manner in which to submit the volume of clinical trial data. This is often referred to as the ‘raw’ data, even though SDTM is flexible enough to contain derived data. Generally, SDTM data sets would be used by medical reviewers to conduct their own exploratory review of the data – often using appropriate software tools such as JMP, jReview or WebSDM The primary purpose of ADaM is to provide a data set that is analysis friendly. But this we mean that it contains derived variables, flag variables that are useful for selection purposes, and is in a structure that is conducive to understanding how a particular statistical analysis was performed. FDA评审时两个都需要!

98 操作数据模型(ODM) Content vs. terminology vs. transport standards

99 CDISC 标准 Protocol CDASH SDTM(SEND) & ADaM ODM LAB XML Protocol
Form Setup & Config Data Capture Data Mgmt Analysis Submission and/or Reporting Review Protocol CDASH SDTM(SEND) & ADaM ODM Frank LAB XML

100 CDISC 操作数据模型 传输标准(XML) 用于传送病例报告表数据 传送完整的审计跟踪信息(21CFR11) 支持电子签名
将电子数据归档,无需对基地原始系统归档 可以自动生成电子病例报告表 实现远程监控或审计 促进不同ODM技术之间数据的交换(支持所有CDM和EDC系统共同特征)

101 可扩展标记语言 XML——将结构化的数据放入文本文档中的方法 类似于HTML 数据/元数据交换非常灵活的标准 基于人类和电脑并可读的文本
Tags “<“ “>” Attributes name=“Value” 数据/元数据交换非常灵活的标准 基于人类和电脑并可读的文本 厂商中立 计算机系统中立 Extensible Markup Language

102 ODM词汇 StudyEvent与患者访视相对应 Form与数据输入方式对应
ItemGroup与小组、关系表或SAS数据集对应。是一组相关的Item。 Item与数据集的变量或SAS的字段相对应。 CodeList与外部查看表格或SAS格式相对应。

103 ODM与跟踪检查 Who Why What When Slide courtesy Dave Iberson-Hurst, Assero

104 受控术语 Content vs. terminology vs. transport standards

105 临床信息流的CDISC之路 Protocol CDASH SDTM(SEND) & ADaM ODM LAB XML
Form Setup & Config Data Capture Data Mgmt Analysis Submission and/or Reporting Review Protocol CDASH SDTM(SEND) & ADaM ODM Frank LAB XML Controlled Terminology

106 CDISC术语 2005年正式启动了CDISC术语项目。
主要目标:定义并支持整个临床试验中CDISC模型的术语需求(从CDASH到SDTM),注重“标准”术语代码表的开发和发布 术语项目包括45名团队成员(FDA、NCI、全球申办者和CRO、学术机构),分为4个项目团队 与NCI企业词汇服务(NCI EVS)建立了重要伙伴关系,拥有专门的CDISC/FDA资源 Controlled Terminology represents one of CDISC’s broadest and most ambitious initiatives. We formalized… Primary Objective…across the clinical trial continuum from the point of data collection through to eSubmissions

107 与NCI EVS的合作 NCI企业词汇服务(NCI EVS)拥有专业知识与大量资源支持CDISC术语项目……
The Enterprise Vocabulary Service of the National Cancer Institute has committed significant resources and is making a significant investment in the CDISC Terminology Initiative. This is of tremendous value to CDISC, as it allows us to leverage their rich knowledge and expertise in the area of Terminology Development and Production.

108 指导原则 (1) 采用、适应并开发基本定律 首先评估和/或利用现有术语 与词汇开发者/拥有者合作,扩展现存不完整词汇
统一CDISC模型,协调预先存在的词汇 When we first kicked-off the CDISC Terminology Initiative in 2005 we identified a set a key working principals (or key objectives) to help guide terminology development. I am pleased to say these guiding principals still hold true today. The first objective is to “define and support terminology development across all CDISC standards” The initial scope of work here centered around defining terminology for the SDTMIG. Since we are a standards org, we need to be sure we are consistent and standardized throughout the org and across all the various CDISC teams…The CDISC Technical Roadmap Finally, we want to “Ensure a harmonized approach…” (NCI, FDA, SDOs) Harmonization is a recurring theme that you will be hearing, because it is a critically important component of standards development. It is the harmonization aspect that will ultimately determine the interoperability and usability of the standards we develop. Standards development in isolation does not work…

109 指导原则 (2) 解决全球项目和组织的国际需求 确保生产术语、支持术语进化的持续的“开源”环境和基础设施
As with all CDISC standards… In looking for a Terminology partner there was only one organization that met these important criteria.

110 数据元素:性别 Patient Care Regulators Industry (EHR Systems) (FDA, EMA)
(Pharma, CROs) Regulators (FDA, EMA) Patient Care (EHR Systems) NIH & Academia Comparative Effectiveness

111 数据元素:性别 <> <> <> <> Data Mapping Patient Care
Industry (Pharma, CROs) Regulators (FDA, EMA) Patient Care (EHR Systems) NIH & Academia Comparative Effectiveness <> Data Mapping <> <> <>

112 (2) 电子表示和查看的一致性;允许语义互操作性
标准数据元素:性别 Industry (Pharma, CROs) Regulators (FDA, EMA) Patient Care (EHR Systems) NIH & Academia Comparative Effectiveness 全球术语标准: 协商一致的定义; (2) 电子表示和查看的一致性;允许语义互操作性

113 体位代码表示例 SDTM和CDASH:VSPOS, EGPOS
标准术语代码表 Sitting Prone Standing Supine Fowlers Semi-Fowlers Trendelenburg Reverse Trendelenburg Right Lateral Decubitus Left Lateral Decubitus CDISC 受控术语 Codelist = Value Set = Permissible Values

114 术语项目组 内部CDISC标准的发展

115 CDISC标准的更多信息 www.CDISC.org SDTM和SDTMIG ADaM CDASH 当前发布版本 当前发布版本 当前发布版本
End of Shannon’s section CDASH 当前发布版本 Copyrighted material - not to be duplicated.

116 CDISC标准的端对端应用

117 Analysis and Reporting
全球生物医学研究标准 (从方案到报告) 综合标准 (BRIDG第3版) 和 受控术语/词汇 FDA eSubmissions Analysis and Reporting Protocol Study Design Eligibility Registration Schedule Case Report Forms (CDASH)** Study Data Laboratory Data (LAB) Tabulated CRF data (SDTM) Study Data Lab Data Study Design Schedule Analysis Datasets (ADaM) * ** Harmonized w/ NCI caBIG CRFs * CDISC and/or HL7 Frank BRIDG = Biomedical Research Integrated Domain Group Model

118 The BRIDG Model* *生物医学研究集成域组(BRIDG)模型 由CDISC发起的临床研究域分析模型, BRIDGing
组织(CDISC、HL7、FDA、NCI等) 标准 研究和医疗保健 Frank

119 BRIDG 的范围 方案驱动的研究和相关监管产物:
即对药物、手术、过程、受试者特点或设备对人类、动物、其他受试者或物质的功效、作用或其他药理、生理或心理的影响的正式评估的数据、组织、资源、规则和进程,以及这一作用要求的或衍生出的所有相关监管产物,包括与上市后不良事件报告相关的数据。 Frank

120 SME View Canonical View OWL View HL7 RIM View

121 实现互操作性 NCI/caBIG Application Development HL7 (RCRIM) V3 Message
caCORE Tooling HL7 (RCRIM) V3 Message Development HL7 Messages CDISC xml data Exchange CDISC Stds IMPLEMENTATION SOLUTIONS Interoperability STAKEHOLDERS BRIDG – 临床研究的域分析模型 严格定义的受控术语 FOUNDATION MODEL Frank Slide by Lisa Chatterjee, Digital Infuzion

122 BRIDG 作为全球标准 BRIDG经过JIC(联合倡议理事会,SDO)的程序,成为全球标准。 BRIDG现在是CDISC标准和HL7标准。
BRIDG已经通过ISO两个投票周期;目标是使BRIDG在2011年成为ISO标准(以及CEN标准)。

123 Standard Controlled Terminology
Why is... Standard Controlled Terminology ...Important? Frank Before we venture into the exciting world of CDISC terminology, I first want to look closely at an expression commonly referred to as the key benefit of controlled terminology and particularly standard controlled terminology.

124 电子临床系统的语义互操作性 Receiver Sender Definition Concept Term Frank
This shows an example of the various ways a simple code list may be defined by different companies, and thus interpreted differently from one computer system to the next. Consistent definitions/concepts have to be created to allow computable (machine readable) data elements. In this example we are considering AE Relatedness to the Study Drug, where possible responses are captured in the AEREL field of the SDTM. If each of the 3 companies shared a standardized code list, information can be exchange more seamlessly and semantic interoperability would be possible.

125 CDASH 建议的CRF开发工作流程 Emphasize Interoperability – using CDISC standards throughout the process

126 ACRO 不良事件的表单 Interoperability allows different systems to use the same content – even if the forms look different, they are collecting the same data elements – data elements that have consistent, known definitions. If we start with a standard data collection form – like AE – and standardize the content and the definitions of the content, we can see how this works. This was actually done in by ACRO.

127 带注释的版本 Standard elements were defined

128 实践 1. ACRO 标准表单 4. 带注释的表单+ ODM 标准 = 标准电子元数据 (XML)
<Study> <Meta… </Meta… </Study> </ODM> 3. ACRO表单+ CDISC SDTM 标准 = 带注释的表单 5. 标准电子元数据配置收集系统 2. CDISC SDTM 标准 The form was mapped to SDTM, and we were able to demonstrate how the content could be used in different systems (based on ODM – a platform agnostic way to represent information)

129 电子表单构造 The next slides show the same content, created in different systems – but all based on the ODM. In some cases it took minutes to create the form (depending on the system) Courtesy of Assero

130 电子表单构造 Frank Courtesy of Formedix

131 电子表单构造 Frank Courtesy of XClinical

132 电子表单构造 Frank Courtesy of XML4Pharma

133 通过ODM的电子表单构造 Frank Courtesy of Outcome 133

134 临床信息流的CDISC之路 Protocol CDASH SDTM(SEND) & ADaM ODM LAB XML
Form Setup & Config Data Capture Data Mgmt Analysis Submission and/or Reporting Review Protocol CDASH SDTM(SEND) & ADaM ODM Frank LAB XML Controlled Terminology

135 CDISC端对端的过程 Protocol Writing CRF Design Data Collection Data Cleaning
Data Analysis Submission Archiving ODM / LAB (CDASH) SDTM / ADaM PRM The system is not just linear either – this allows us to reuse the content and feed the information back into the process (data warehouse, data warehouse provides important information for not only what went right, but also what went wrong. Can learn things we never thought of… Graphic courtesy of Dr. Philippe Verplancke, Founder and CEO, XClinical

136 SHARE 加快标准的开发

137 一个全球的、开放的电子图书馆,通过先进的技术实现精确和标准化的数据元素定义(包括值集),可以用于应用程序和研究中,改善生物医疗研究和它与医疗保健的联系。
Where all this is leading is the SHARE project. 关键目标:更快地开发疗效标准, 使CDISC标准更易于应用。

138 2011年 CDISC SHARE项目计划 MD Model R1 Software CDASH & SDTM Governance
- MindMaps & xls. Content Sub-team 1 Content Sub-team 2 Study Construction Concepts External User Interface Governance 3 content sub teams to map all domains in content spreadsheets (with mindmaps). A 4th User Interface sub-team to be formed in late April Governance Sub-team to focus initially on simple use case scenario development. Draft requirements document to be refined based upon work of governance and content teams. CDISC Stakeholder input into draft requirements documentation. External User Interface Sub-team to start. Continued collaboration with NCI-EVS and NCI developers - delivery of Requirements Package 2. Gov Sub-team Requirements R1 Software

139 CDISC长期SHARE发展计划 内容 连续较小的 增长
Continuing SW Releases (do not need to be aligned with Phases) 主要发展阶段 内容 连续较小的 增长 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 SDTM CDASH Oncology, Devices, TA (current) SEND and new TA ADaM and new TA new TA

140 联接研究和医疗保健

141 优化进程 eSource Healthcare Clinical Delivery Research data conception
Documents EHR (e)CRFs Healthcare Delivery eSource Clinical Research Becky auto reconciliation ~1997

142 电子来源数据交换(eSDI)项目 目标:FDA倡议在现有法规的背景下促进电子技术在临床研究收集电子来源数据时的应用。 总体目标:
注意:电子来源是指开始时使用电子手段收集数据,如通过电子日记、电子患者报告结果、电子数据收集、电子健康档案等。 总体目标: 使医师更容易进行临床研究 只需一次性收集行业标准格式的数据,即可多次下游使用,从而 提高数据质量和确保患者安全 产物: eSDI文件 (对电子来源有12项要求) ( Becky

143 临床试验中电子来源数据和转录为电子数据的数据收集工具 期望的读后报告
2010年6月9日 EMA/INS/GCP/454280/2010 GCP 督查工作组 (GCP IWG) 2010年8月1日生效 临床试验中电子来源数据和转录为电子数据的数据收集工具 期望的读后报告 References 2. CDISC (Clinical Data Interchange Standards Consortium) Clinical Research Glossary Version 8.0, DECEMBER 2009 3. CDISC e-source standard requirements-CDISC (Clinical Data Interchange Standards Consortium) Version November 2006. Becky

144 CDISC项目: Healthcare Link
Patient Care World Clinical Research World 这一行业行动成功地证明了医师临床系统(EHR)和药物临床试验系统之间的基于开放标准的临床信息互操作性。 ——杜克大学临床研究所、CDISC、诺华公司、默克制药公司、强生公司、微软公司 下一步是开发并证明数据采集检索表(RFD) (项目负责人:Landen Bain, CDISC Liaison to Healthcare) Becky

145 Research Results, eSubmission
患者价值: 医疗质量、安全性 研究使医疗更加有效 从开始就提高整个进程的质量 Data Sources Site Research Archive Regulatory Authority Scientific Pub-lication EHR Research Results, eSubmission Standard Formats Research Data De-identified Data Public Registries, IRB, DSMBs EDC 审阅者 (如研究合作伙伴、申办者、登记处、监管机构、IRB、DSMB) 研究申办者 (如 ARO、CRO、供应商、主要研究者、潜在AHRQ等) Becky 研究基地 (医疗点、研究者、 基地工作人员) CRO or Partner CDISC 标准不只是为了FDA的电子提交!

146 Research Results, eSubmission
患者价值: 医疗质量、安全性 研究使医疗更加有效 从开始就提高整个进程的质量 Data Sources Site Research Archive Regulatory Authority Scientific Pub-lication EHR Research Results, eSubmission Standard Formats Std. Common Research Dataset (+) EHR De-identified Data Public Registries, IRB, DSMBs Interoperability Specification EDC Continuity of Care Doc RFD* 审阅者 (如研究合作伙伴、申办者、登记处、监管机构、IRB、DSMB) Becky 护理和/或研究基地 (医疗点、研究者、 基地工作人员) 研究申办者 (如 ARO、CRO、供应商、主要研究者、潜在AHRQ等) CRO or Partner

147 集成的工作流程:HER和临床研究、质量、安全性和公共卫生
IS IS = Interoperability Specification Clinical Research using CCD and CDASH: G. Pompidou Univ Hospital in Paris (C. Daniel) & Prof. Park Med Services w/ Greenway EHR Georgia, U.S. Case Report Form Possibility to Harmonize Value Sets between Quality Measures and Research ASTER Harvard to FDA: AE Reporting 34 min to < 1 min and rate increased dramatically & Hamamatsu Med School CPOE and EMR to PMDA in Japan IHE-CDISC Retrieve Form for Data Capture (RFD) = key common workflow integration profile (easy for EHRs to implement) RFD Adverse Event Report H1N1 Outbreak Reports to CDC (+ bio- surveillance demo) Outbreak Report Quality Measure Becky EHR 147

148 患者价值: 医疗质量、安全性 EHR Study Sponsor Research Site Reviewers
标准:精简工作流程,从方案通过报告到确保有用的数据,使患者和参与临床研究的人的数据完整而有意义 Regulatory Authority eProtocol Scientific Publication EHR Research Results, eSubmission Standard Formats Std. Common Research Data (CDASH) Public Registries, IRB, DSMBs De-identified Data EDC Research Site (Healthcare Location, Investigator, Site Personnel) Study Sponsor (e.g. ARO, CRO, Vendor, Principal Investigator) Reviewers (e.g. Research Partner, Sponsor, Registry, Regulator, IRB, DSMB) Becky Post-AHIC, try to articulate business proposition in value case. Site Research Archive 148

149 可用的(核心)数据标准和集成状 况/互操作规范的能力 (由标准带来灵感而产生的创新)
大幅减少报告安全性、研究、公共卫生的核心数据的时间和精力 适用于电子日志、患者输入数据、EDC和EHR 提高数据质量 数据更易于汇总、分析或查询 可扩展;为更复杂的研究和临床基因组学的个性化医疗铺平了道路 供应商更易实施;获得EHRA的支持 下一步(进展中): 使用方案(进程)表述模型(研究/进程设计)来规划EHR业务流程,自动为研究和其他数据的重复使用次序(高处理量表型)安排进度和收集数据。 Becky

150 Comparative Effectiveness
提高效率: 收集一次,重复使用多次 Clinical Data Research; Comparative Effectiveness Clinical Decision Support Public & Population Health Quality Measurement & Patient Safety Reimbursement Management Becky Donald T Mon, PhD, AHIMA

151 研究和医疗保健中统一的标准/术语至关重要:
使临床医生能够在临床护理的同时进行研究和安全监测 在合作伙伴间汇总足够的数据,进行可靠的研究分析,包括比较效率的分析 识别新的生物标记,并与人群特征和结果联系起来 减少将研究信息应用到医疗决定中大约17年的滞后时间 Becky

152 Strength through collaboration
CDISC 不只是标准! CDISC愿景 Informing patient care and safety through higher quality medical research Strength through collaboration


Download ppt "Becky starts here © CDISC 2011."

Similar presentations


Ads by Google