Download presentation
Presentation is loading. Please wait.
1
Introduction to Polymer Physics
Prof. Dr. Yiwang Chen School of Materials Science and Engineering, Nanchang University, Nanchang
2
Reference Books 高分子物理,何曼君等,复旦大学出版社,(第三版), 2006年
An introduction to polymer physics(英文影印版),David I. Bower, 化学工业出版社,2004年 Polymer Science and Technology, Joel R. Fried, 2nd Edition, 2003 高分子物理,金日光,华幼卿主编,化学工业出版社,(第三版),2007年
3
Chapter 1. Introduction to Polymer Science
1830s, Charles Goodyear: Vulcanization of natural rubber for tire use 1845, C. F. Schönbein: Reaction of cellulose with nitric acid for celluloid 1907, L. H. Baekeland: Produce Phenol-formaldehyde resin as protective coating 1930s, DuPont: Nylon and Teflon 1938, Dow: Polystyrene 1939, ICI: Low-density polyethylene 1950s, K. Ziegler and G. Natta: Polypropylene using transition-metal catalyst 1960s and 1970s, number of high performance engineering plastics polymers: Polycarbonate, poly(phenylene oxide), polysulfones, polyimides, aromatic polyamides (Kevlar) More recently, specialty polymers with electrically conducting, photoconducting, and liquid crystal properties
4
Reasons for developing synthetic polymers
One was the need in the inter-war years to find replacements for natural materials such as rubber, which was in short supply. A second reason was that there was by then an understanding of the nature of these materials. In 1910, Pickles had suggested that rubber was made up of long chain molecules, contrary to the more generally accepted theory that it consisted of aggregates of small ring molecules. During the early 1920s, Staudinger reformulated the theory of chain molecules and introduced the word Makromolekül into the scientific literature in This idea was at first ridiculed, but at an important scientific meeting in Düsseldorf in 1926, Staudinger presented results, including his determinations of molar masses, which led to the gradual acceptance of the idea over next few years. Other reasons for the accelerated development were the fact a new source of raw material, oil, was becoming readily available and the fact that great advances had been made in processing machinery, in particular extruders and injection moulders.
5
高分子科学的历史、现状和未来 1、十九世纪之前:天然高分子的加工利用 高分子工业: 公元前,蛋白质、淀粉、棉、毛、丝、麻、造纸、油漆、虫胶等
高分子科学: 1833年,Berzelius 提出 “Polymer”一词,指以共价键、非共价键联结的聚集体
6
2、十九世纪中叶:天然高分子的化学改性 高分子工业: C.N.Goodyear 天然橡胶硫化 C.F.Schobein 硝化纤维 J.W.Hyatt 硝化纤维塑料 1889 建成最早的人造丝工厂 1900 英国建成年产1000t粘胶纤维工厂 高分子科学: 1870 提出纤维素、淀粉、蛋白质是大的分子 1892 W.A.Tilden 确定天然橡胶干馏产物异戊二烯结构式
7
3、二十世纪初叶:高分子工业和科学的创立的准备时期
高分子工业: L.Backeland 酚醛树脂 丁钠橡胶 醋酸纤维和塑料 醋酸乙烯工业化 聚乙烯醇、聚甲基丙烯酸甲酯 高分子科学: 1902 提出蛋白质是由氨基酸残基组成的多肽结构 1907 W.Ostwold 提出分子胶体概念 1920 H.Staudinger 提出“共价键联结的大分子” 之现代高分子概念
8
4、二十世纪30~40年代:高分子工业和科学的创立时期
高分子工业: 塑料:PVC(1931)、PS(1934)、LDPE(1939)、ABS (1948) 橡胶:氯丁胶(1931)、丁基胶(1940)、丁苯胶(1940) 纤维:PVC(1931)、尼龙-66(1938)、PET(1941)、维纶(1948) 高分子科学: H.Staudinger 《高分子有机化合物》出版 1929~40 W.H.Carothers. P.J.Flory 缩聚反应理论 1932~38 W.Kuhn, K.H.Mayer 橡胶弹性理论 1935~48 H.Mark, F.R.Mayo, et al 链式聚合反应和共聚合理论 1942~49 P.J.Flory, M.L.Huggins, et al 高分子溶液理论 40年代 Harkin-Smith-Ewart 乳液聚合理论
9
5、二十世纪50年代:现代高分子工业确立、高分子合成化学大发展时期
高分子工业: HDPE (1953~55)、PP(1955~57)、BR(1959)、PC(1957) 石油化工产品的80%用于高分子工业 塑料以两倍于钢铁的速率增长(12~15% / 年) 高分子科学: 1953~56 Ziegler-Natta 催化剂和配位阴离子聚合 50年代 Szwarc 阴离子活性聚合 Kennedy 阳离子聚合 A.Keller 获得聚乙烯单晶
10
6、二十世纪60年代:高分子物理大发展时期 高分子工业: 通用塑料:PE、PP、PVC、PS (80%)、PF、UF、PU、UP(20%)
工程塑料:ABS、PA、PC、PPO、POM、PBT、 合成橡胶:丁苯胶、顺丁胶、乙丙胶、异戊胶、丁基胶、丁腈胶 合成纤维:PET、PAN、PP、PVA、nylon 高分子科学: 各种热谱、力谱、电镜、IR手段的应用:1960 高分辨率NMR、 GPC的使用 结晶高分子、高分子粘弹性、流变学理论研究的深入
11
7、二十世纪70年代:高分子工程科学大发展时期
高分子工业: 生产的高效化、自动化、大型化: 塑料~6000万t、橡胶~700万t、化纤~6000万t、 高分子合金,如HIPS 高分子复合材料,如碳纤维增强复合材料 高分子科学: 1971~78 白川英树等 导电高分子 Kevlar 纤维
12
8、二十世纪末期:高分子科学的扩展与深化 高分子工业:
80年代初,三大合成材料产量超过10亿t,其中塑料8500万t,以体积计超过钢铁的产量 精细高分子、功能高分子、生物医学高分子 高分子科学: - 提出分子设计概念 O.W.Webster 基团转移聚合 王锦山 原子(基团)转移自由基聚合
13
Milestones for Developing Polymers
1920s, Staudinger, the word “Makromolekül”, and determination of molar masses of polymers 1942, Paul Flory and Maurice Huggins, Lattice theory for thermodynamics of dilute solution of polymers 1950s, K. Ziegler and G. Natta, coordination polymerization for polyethylene and polypropylene. 1970s, Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa, conductive polymers, “fourth generation of polymeric materials”
14
1926年因发明高速离心机并用于高分散胶体化学研究
高分子科学重大事件 T.Svedberg (1884~1971) 瑞典人,物理化学家。研究胶体分子的提纯和分离技术,特别是对蛋白质的研究。1924年发明了超速离心机,用于蛋白质分子测定,并从沉降常数和扩散系数获得血红蛋白的分子量。 Svedberg 的工作为高分子化学的建立创造了实验条件。 1926年因发明高速离心机并用于高分散胶体化学研究 获诺贝尔化学奖
15
1953年因“链状大分子物质的发现”获诺贝尔化学奖
H.Staudinger (1881~1965) 德国人,1903年在Halla大学完成博士论文。毕业后在多所大学任教。 早期研究有机化学,后转向对天然有机物的结构研究。 1920年,在《德国化学会志》上发表划时代的文章《论聚合》,首次提出高分子的概念。 1932年,发表专著《高分子有机化合物》,标志着高分子化学的诞生。 1953年因“链状大分子物质的发现”获诺贝尔化学奖
16
K.Ziegler (1898~1973) * 二十世纪50年代,石油化工为高分子合成提供了廉价丰富的原料,但其中最
* 二十世纪50年代,石油化工为高分子合成提供了廉价丰富的原料,但其中最 多的α-烯烃由于没有合适的催化剂而末能得到充分使用。 K.Ziegler (1898~1973) 德国人, 22岁获博士学位。毕业后在多所大学任教,主要从事金属有机化合物研究。治学严谨,重视理论与实践相结合。实验技巧娴熟,危险实验常亲自做。一生发表论文200余篇。 对助手要求严格,对重要的书要求助手“通背” “翻破”为止。1946年起任前联邦德国化学会会长。 * 1923年,开始碱金属有机化合物研究 * 1948年,用AlH3与乙烯反应,得到不带支链的高级烯烃 * 1953年,在一次实验中意外发现由于反应釜中残留的痕量镍而只生成二聚体 * 1955年,进一步的研究发现用TiCl4和Al(C2H5)3 组成的催化体系,能使乙烯 在室温低压下迅速聚合成为高分子量的高密度聚乙烯, Ziegler 催 化剂由此诞生。
17
1963年, K.Ziegler 和 G.Natta 因“在高分子合成 和工艺领域中的重大发现”共同获诺贝尔化学奖
意大利人,21岁获博士学位。毕业后在多所大学任教,同时兼任Montecatini(蒙埃)公司顾问。主要从事有机合成和高分子结构研究。高度重视工业工作,不单纯学术生涯。一生发表论文700余篇,专利约百项。 * 1930年,开始进行高分子结构研究 * 1952年,受Ziegler 研究结果影响,开始对Ziegler催化剂进行进一步研究 * 1954年, 用TiCl3和Al(C2H5)3 组成的催化体系得到聚丙烯 * 1954年,对聚丙烯的结构进行研究发现为“全同立构” 1963年, K.Ziegler 和 G.Natta 因“在高分子合成 和工艺领域中的重大发现”共同获诺贝尔化学奖
18
P.J.Flory (1910~1985) 1974年因在长链分子物理化学性质方面的研究 获诺贝尔化学奖
美国人,1934年获博士学位后,作为物理化学家进入杜邦公司,在Carothers手下工作。Carothers鼓励他从事将数学方法用于高分子领域的研究。 按照这一思路, Flory的研究在许多重要的理论方面多有建树:高分子分子量分布、等活性反应原理、高分子溶液的热力学研究等。 1974年因在长链分子物理化学性质方面的研究 获诺贝尔化学奖
19
1991年因把研究简单系统中有序现象的方法推广到比较 复杂的物质形式,特别是推广到液晶和聚合物的研究中
P.G. de Geenes (1932~) 法国人,理论物理学家。60~70年代,把研究简单系统中有序现象的方法推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中,为物理学研究开拓了新的领域。 聚合体链动态模型 1991年因把研究简单系统中有序现象的方法推广到比较 复杂的物质形式,特别是推广到液晶和聚合物的研究中 获诺贝尔物理奖
20
2000年因在导电聚合物领域的开创性工作共同 获诺贝尔化学奖 Alan.G.MacDiarmid Alan.J.Heeger 白川英树
(1927~) Alan.J.Heeger (1936~) 白川英树 (1936~) 日本人,现任筑波大学材料科学研究所化学教授 美国人,现任宾夕法尼亚大学化学教授 美国人,现任加利福尼亚大学巴巴拉分校聚合物和有机固体研究所所长 2000年因在导电聚合物领域的开创性工作共同 获诺贝尔化学奖
21
1.1 Polymer Structure Chemical structure (primary structure) Chemical composition, sequence of monomer units, Stereochemistry or tacticity of the chain, Geometric isomerization in the case of diene-type polymers Structure of single chain (secondary structure) Molecular size and shape, flexibility and conformation of chain Morphologic structure (advanced structure) Stacking of polymer chains, including crystalline structure, amorphous structure, oriented structure, liquid-crystalline structure
22
1.2 Primary Structure of Polymer
Chemical composition of structural units The properties of polymers are directly influenced by the overall chemical composition of chains Homochain polymers (including carbon-chain polymers) Heterochain polymers (from polycondensation, ring-opening polymerization) Elemental polymers (backbone comprised of silicon, phosphor, germanium, aluminium, titanium, arsenic, antimony, etc)
23
Sequential arrangement of monomer units in polymers
The possible sequence in addition polymerization of vinyl monomers (CH2=CHR): Head-to-Head or Tail-to-Tail Head-to-Tail Random Sequential isomer: The isomers resulted by coupling sequence of structural units
24
Sequential arrangement of monomer units in poly(vinyl chloride)
Examples: Sequential arrangement of monomer units in poly(vinyl chloride) Reaction of PVC and zinc powder in dioxane Head-to-Tail Head-to-Head Dechlorination 86.5% Dechlorination 100% Dechlorination 81.6% for random sequence
25
Sequential arrangement of monomer units in Poly(methyl methacrylate) Decomposition at 200℃: Head-to-Tail, dehydration producing hexagon ring Head-to-Head, dehydration producing pentagon ring Existence of only hexagon ring by determination of FTIR, therefore Head-to-Tail structure
26
Branching and Cross-linking
Branching degree: averaged molecular weight of chains between two adjacent branching points Star branching Comb branching Random branching Cross-linking network
27
Copolymer structure Copolymers: Polymers with two or more different repeating units in their chains Alternative Copolymer Random Copolymer Block Copolymer Graft Copolymer
28
5 序列问题: 以单体单元的平均序列长度和嵌段数来描述共聚物的序列结构。 共聚物的序列长度和分布与单体的性质、配比和聚合条件有关。 嵌段数 R:指在100个单体单元中出现的各种嵌段数的总和。 A B AA BBB A BB AA BBBB AAA B 平均序列长度: Sequence length A B AA BBB A BB AA BBBB AAA B 交替共聚物:R=100,嵌段数与单体单元数相等。 均聚物:R 0,这时嵌段为无限长。 无规共聚物:0 < R < 100 因此,可以用 R 值可以表征共聚物的类型,R 愈大,交替性愈大,相反,R 减小,嵌段性增大。
29
Tacticity Conformation: the geometrical arrangement of atoms in the polymer chain Configuration: the stereochemical arrangement of atoms Unlike the conformation, the configuration of a polymer chain cannot be altered without breaking chemical bonds. Several different placement of the asymmetric substituent groups Isotactic, Syndiotactic, Atactic configuration Tacticity: the percentage of isotactic and syndiotactic structure in polymer
30
Geometric Isomerism (Cis-configuration, Trans-configuration)
31
1.3 Secondary Structure of Polymer Chain
Molecular weight of polymer Usaully using Number-averaged Molecular Weight A typical synthetic polymer sample contains chains with a wide distribution of chain lengths This distribution is seldom symmetric and contains some molecules of very high molecular weight It is possible to synthesize some polymers with nearly monodisperse distribution under laboratory It is necessary to define an average molecular weight to characterize an individual polymer sample Polymerization degree is also used to characterize molecular weight
32
Molecular weight is important in determining polymer properties
A typical distribution of molecular weights shown as a plot of the number of moles of chians, Ni, having molecular weight Mi, against Mi
33
Inter-Rotational Conformation of Polymer chains
Individual bonds are free to rotate around themselves. Alomst a limitless number of conformations in three-dimensional space are possible for long, flexible macromolecules. Polymer chains prefer to be entanglement.
34
Rotation of individual bond need to overcome potential barrier
Ethane CH3–CH3 1,2– Dichloroethane ClCH2—ClCH2
35
单键内旋转时,由于非邻近原子之间的相互作用,使反式和旁式构象之间存在着能量差 。
三、高分子链的柔顺性 Flexibility 1. 静态柔性 单键内旋转时,由于非邻近原子之间的相互作用,使反式和旁式构象之间存在着能量差 。 很小,两种构象存在的几率相差无几,在一条高分子链中单键的反式和旁式构象无规排列,呈无规线团状,高分子链较柔顺。 增大,能量低的反式构象占优势,使链的局部变刚性,我们可以把这时的高分子链看成是由许多刚性的“链段”组成的柔性链。 链段长度(又称持续长度) Persistence length 链的静态柔性可以用链段长度与整个分子的长度之比 来表示
36
2. 动态柔性 反式和旁式构象之间的转变需要时间 p ,时间 p 取决于位垒 E。 如果E 很小,则链的动态柔性很好,如果E 很大,则:
37
3.结构对高分子链柔顺性的影响: 1. 主链结构: 主链中含有杂原子时,高分子链的柔顺性增加。 主链中含有芳杂环结构的高分子链,其柔顺性较差。 结构单元中含有双键的高分子链,有较好的柔顺性。 由共扼双键所组成的高分子链都是刚性分子。 2. 侧基: 极性侧基:侧基极性的强弱与高分子链的柔顺性成反比。 非极性侧基:侧基体积的大小与链的柔顺性成反比,高分子链的对称性与链的柔顺性成正比。 3. 链的长短: 高分子链很短时,分子呈刚性。 当分子量增大到一定程度时,分子量对柔顺性无影响。
38
1.4 Polymer Conformation and Chain Dimensions
高分子主链单键的内旋转赋予高分子链的柔性,使高分子链可以任取不同的卷曲程度。 当分子量确定以后,由于分子的柔性,分子的构象是在不断改变的,构象的改变也使分子的尺寸在不断的变化。 高分子链的卷曲程度常用高分子链两端点间的直线距离—末端距(h)来量度。 End-to-end distance (h)
39
The mean-square end-to-end distance
To describe the conformation of polymer molecules, a model of a random-flight or freely jointed and volumeless chain is often used as the starting point. Such a hypothetical chain is assigned n freely jointed links of equal length, l. If one end of this hypothetical chain is fixed at the origin of a Cartesian coordinate-system, the other end of the chain has some finite probability being at any other coordinate position. One of the many possible conformations, and the simplest, for this idealized chain is the fully extended (linear) chain. End-to-end distance: Square end-to-end distance:
40
Mean-square end-to-end distance of flexible chain
The end-to-end distance is sum of all bond vector: The square end-to-end distance: The mean-square end-to-end distance: For freely jointed chain:
41
The vector is calculated from auxiliary angle, :
Freely rotating chain Every bond can freely rotate without any stereo hindrance, while the valence bond angles are fixed. The vector is calculated from auxiliary angle, : For freely rotating chain:
42
Calculation from Cartesian coordinate-system
Flory was the first to derive an expression for the probability of finding one end of the freely jointed polymer chain in some infinitesimal volume (dV=dxdydz) around a particular coordinate (x,y,z) point when one end of the chain is fixed at the origin of a Cartesian coordinate-system. The probability is given by a Gaussian distribution in the form where w(x,y,z) is the Gaussian distribution function, h is the radius of the spherical shell centered at the origin.
43
W(h) is the radial distribution function:
Alternately, the probability that a chain displacement length has a value in the range h to h+dh is given as: W(h) is the radial distribution function: W(h) against h: while h=0 and h=, having minimal value, when h=h*, having maximal value h* is the most probable end-to-end distance 或
44
The mean-square end-to-end distance is obtained from the second moment of the radial distribution function as: Substitution of the radial distribution function and evaluating the integral gives the mean-square end-to-end distance of the freely jointed and volumeless chain as: namely The mean end-to-end distance: Alternately, the root-mean-square end-to-end distance, h21/2, of the freely jointed chain is given as h21/2=n1/2l.
45
等效自由结合链 高分子链中的单键旋转时相互牵制,一个键转动,要带动附近一段链一起运动,这样每个键不成为一个独立运动单元。我们把由若干个键组成的一段链算作一个独立运动单元,称为“链段”,Kuhn 链段 令链段与链段自由结合,并且无规取向,这种链称为“等效自由结合链” 若将无扰状态的高分子链划分成等效自由结合链 对于聚乙烯: 若假定聚乙烯是自由旋转链: 在条件下实验测定聚乙烯均方末端距:
46
As a convenient way to express the size of real polymer chain in terms of parameters that can be readily measured, the freely rotating chain model may be modified to include the effects of fixed bond angles, restricted rotation, and excluded volume on the root-mean-square end-to-end distance in the following way: In this expression, is called the chain expansion factor which is a measure of the effect of excluded volume, and C is called the characteristic ratio, which contains the contributions from both fixed valence angles and restricted chain rotation. For large polymer chains, typical values of C range from about 5 to 10. Another way to represent above equation is by use of the unperturbed root-mean-square end-to-end distance, h2 01/2, as: The unperturbed dimensions are those of a real polymer chain in the absence of excluded-volume effects (i.e., for =1). The characteristic ratio is obtained as the ratio of the unperturbed mean-square end-to-end distance to the mean-square end-to-end distance of the freely jointed model.
47
特征比Cn 无扰链与自由结合链均方末端距的比值 对于自由结合链Cn=1 对于完全伸直链 空间位阻参数(刚性因子) 实测的无扰均方末端距 与自由旋转链的均方末端距 之比
48
Unperturbed dimensions are realized in the case of a polymer in solution with a thermodynamically-poor solvent at a temperature near incipient precipitation. This temperature is called the theta () temperature. Experiments, using small-angle neutron scattering, have indicated that the dimensions of polymer chains in the amorphous solid-state are also unperturbed. In the solution with a good solvent (i.e., >1), where polymer-solvent interactions are stronger than polymer-polymer or solvent-solvent interactions, dimensions of the polymer chain are expanded over those in the unperturbed state (=1).
49
Root-mean-square rotational radius
均方旋转半径:假定高分子链中包含许多个链单元,每个链单元的质量都是mi ,设从高分子链的重心到第 i 个链单元的距离为Si ,它是一个向量,则全部链单元的 Si 的重量均方根就是链的旋转半径 S,其平方值为: 对柔性分子,S2 值依赖于链的构象。将 S2 对分子链所有可能的构象取平均,即得均方旋转半径。 在 条件下可测得无扰均方旋转半径。 对于自由结合链﹑自由旋转链和等效自由结合链,当分子量为无限大时,其均方末端距与均方旋转半径间存在同样的关系:
50
思考题 假定聚乙烯的聚合度为2000,键角为109.5º,求伸直链的长度Lmax与自由旋转链的根均方末端距之比值。并由分子运动观点解释某些高分子材料在外力作用下可以产生很大形变的原因。 作业: P329: (7), (8) (9), (10).
Similar presentations