Presentation is loading. Please wait.

Presentation is loading. Please wait.

期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多

Similar presentations


Presentation on theme: "期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多"— Presentation transcript:

1 期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
希望同學們能及早準備

2 Chapter 6 Series Solutions of Linear Equations
假設 DE 的 solutions 為 polynomial 的型態 (和 Cauchy-Euler Method 以及 Taylor Series 的概念相近) 被稱作為 power series centered at x0 Power series 觀念的複習 (Sec. 6-1) x0 is a non-singular point (Sec. 6-2) 解法 regular singular point (Sec. 6-3) x0 is a singular point irregular singular point examples (Sec. 6-4)

3 Section 6-1 Reviews of Power Series
定義 1. Power series 2. Convergence: exists 測試方法:Ratio test (test for convergence) L < 1: converge L > 1: diverge L = 1: 不一定 3. Radius of Convergence R L < 1 if |x − x0| < R L > 1 if |x − x0| > R

4 Example 1 (text page 238) For the Power series for 1 < x < 5 Interval of convergence: (1, 5) However, since when x = 1, the power series becomes which is also convergent, the interval of convergence is modified as: Interval of convergence: [1, 5)

5 6-1-2 Maclaurin Series (Taylor Series)

6 Maclaurin Series (Taylor Series) Interval of Convergence
(-∞, ∞) (-1, 1] (-1, 1)

7 Example 2 (text page 240) Find a power series representation of exsinx

8 Section 6-2 Solutions about Ordinary Points
Suppose that the solution is 方法適用情形 (1) Linear (2) x0 is not a singular point (3) It is better that a0(x), a1(x), …., an(x), g(x) are all polynomials. (or can be expressed by Taylor series)

9 不是 singular point 的 即為 ordinary point
解法流程 Step 1 將       代入 (x0 必需為 ordinary point) 不是 singular point 的 即為 ordinary point Step 2 對齊 (一律變成 (x - x0)k ) Step 3 合併 Step 4 比較係數,將 cn 之間的關係找出來 Step 5 Obtained independent solutions and general solution

10 6-2-3 例子 Example 5 (text page 246) Set
例子 Example 5 (text page 246) Set since P(x) = 0 and Q(x) = x are analytic at 0 Step 1 set k = n + 1 set k = n −2 Step 2 對齊

11 Step 3 Step 4 2c2 = 0 c2 = 0 recurrence relation c0, c1 給定之後 k = 1 k = 2 k = 3

12 以此類推,所有的 cn 的值都可以算出來 (以 c0 或 c1 表示)
k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 :

13 Step 5 y1 y2 不寫在  裡面 ratio test:

14 Example 6 (text page 248) (analytic at x = 0) Radius of convergence? Step 1 k = n k = n − 2 k = n Step 2 k = n

15 Step 3 k = 0 k = 1 Step 4

16 c0, c1 給定之後 :

17 Step 5 y2 y1 不寫在  裡面 |x| < 1 (Why?) ratio test:

18 Example 8 (text page 250)

19 定義 1. Analytic at x0: If a function can be expressed as a power series and the radius of convergence of the power series is nonzero 簡單的判斷 f(x) 在 x0 是否為analytic 方法 (1) f(x0) should be neither  nor − (2) f(m)(x0) should be neither  nor − m = 1, 2, 3, ……….

20 2. Ordinary Point and Singular Point:
 For the 2nd order linear DE Definition 6.1 x0 is an ordinary point of the 2nd order linear DE if both P(x) and Q(x) are analytic at x0 Otherwise, x0 is a singular point . Theorem 6.1 If x0 is an ordinary point of the 2nd order linear DE, then we can find two linearly independent solutions in the form of a power series centered at x0 , i.e.,

21  For the kth order linear DE
Extension of Definition 6.2.1 x0 is an ordinary point of the kth order linear DE if P0(x), P1(x), P2(x), ………. , Pk−1 (x), are analytic at x0 Otherwise, x0 is a singular point . Extension of Theorem 6.2.1 If x0 is an ordinary point of the nth order linear DE, then we can find n linearly independent solutions in the form of a power series centered at x0 , i.e.,

22 6-2-5 Interval of Convergence 的判斷方法
判斷方法一: 找出 的條件 判斷方法二 (較快速,但較不精準 找出的收斂的範圍有時會比實際的收斂範圍小) 其中 R 是 x0 和最近的 singular point 的距離 Singular point can be a complex number , see Example 6 超過這個範圍未必不為 convergence

23 思考 (1) 對於 nonhomogeneous 的情形….. (2) 這方法還可以用在什麼情形?

24 本節需注意的地方 (1) 要了解幾個重要定義: (a) convergence, (b) radius of convergence, (c) analytic at x0, (d) singular point, (e) ordinary point (2) 複習一下 Taylor series (如 page 349) (3) Index 的地方計算要小心 (a) 先都化成 xk 再合併,(b) 頭幾項可能要獨立出來 (c) Index 對齊計算要小心 (4) nth order linear DE 要有 n 個 linearly independent 解 (5) 有時要考慮 interval of convergence

25 Section 6-3 Solutions about Singular Points
假設解為 方法適用情形 (1) Linear (2) (x −x0)Pn−1 (x), (x −x0)2Pn−2 (x), …………. , (x −x0)n−1P1(x), (x −x0)nP0(x) are analytic at x0 (比較: Section 6-2 要求 Pn−1 (x), Pn−2 (x), …………. , P1(x), P0(x) are analytic at x0) (3) It is better that P0(x), P1(x), …., Pn-1(x) are all polynomials.

26 6-3-2 定義 Singular Points 分成二種
定義 Singular Points 分成二種  If x0 is a singular point but (x −x0)Pn−1 (x), (x −x0)2Pn−2 (x), …………. , (x −x0)n−1P1(x), (x −x0)nP0(x) are analytic at x0 x0 : regular singular point  If (x −x0)Pn−1 (x), (x −x0)2Pn−2 (x), …………. , (x −x0)n−1P1(x), (x −x0)nP0(x) are not analytic at x0 x0 : irregular singular point

27 Example 1 (text page 253) x = 2 is a point x = −2 is a point

28 6-3-3 解法 解法的關鍵: 假設解為 Theorem 6.3.1 Frobenius’ Theorem
解法 解法的關鍵: 假設解為 Theorem Frobenius’ Theorem 若 x0 是 linear DE 當中的一個 regular singular point 則這個 linear DE 至少有一個解是 的型態

29 Process Step 1 將       代入 Step 2 Power 對齊 Step 3 合併 Step 4 算出 r Step 5 比較係數,將 cn 之間的關係找出來 Step 6 將 Step 4 得出的 r 代入 Step 5 得出所有的 independent solutions 及 general solution Step 7 (見後頁)

30 (Step 7) 當 (1) r 有重根 或 (2) r 的根之間的差為整數,且從 Step 6 得出來的解不為 independent 時 和長除法找出 y2(x) (參考 Section 6-3 的 Examples 4, 5) 當 r 的根之間的差為整數,但從 Step 6 得出來的解為 independent 時, 不需進行這個步驟

31 6-3-4 範例 Example 2 (text page 255) Step 1 將 代入 Step 2 Power 對齊
範例 Example 2 (text page 255) Step 1 將      代入 Step 2 Power 對齊 n = k − 1 n = k n = k k = n + 1

32 Step 3 合併 Step 4 算出 r Step 5

33 Step 6 當 r = 0 當 r = 2/3 : :

34 Solution of Example 2 (別忘了將最後的解寫出)

35 Examples 4, (text pages 258, 259) Step 1 將       代入 Step 2 對齊 n = k n = k −1 Step 3 合併

36 Step 4 Step 5 Step 6 當 r = 1

37 Step 6 當 r = 0 k = 1 時不能算 此時,應該根據 Step 3,由 (k = 1, r = 0 代入) c0 必需等於 0, c1 可為任意值 …………. 這地方容易犯錯,要小心 m = n − 1

38 因為前頁算出來的 y2(x) 等於 y1(x), 只好另外用 Sec. 4-2“reduction of order” 的方法求解

39 long division 長除法 思考:為何不是 ln|x| ?

40 多項式的長除法 計算 (1) (x) (x -2) (x -1) (x2) (x3) (x4) (x5)

41 6-3-6 Indicial Equation 2nd order case
If x0 is a regular singular point where 由於 p(x) 和 q(x) 皆為 analytic

42 將 y(x), y'(x), y''(x), p(x), q(x) 代入
其中 (x x0) r 的 coefficient 為 indicial equation

43 當 linear DE 為 2nd order 時,r 可以由
求出 其中 a0 = p(x0) b0 = q(x0)

44 For the 2nd order case two roots: r1, r2 (Case 1) r1  r2 and r1, r2 are real, r2 − r1  integer 可以找出兩組          的解      (Case 2) r1  r2 and r1, r2 are real, r2 − r1 = integer 一個解是 另一個解是 C 有時等於 0 (和 case 1 相同) 有時不為 0

45 (Case 3) r1 = r2 時 C 一定不為 0 或寫成 (Case 4) r1  r2 and r1, r2 are complex 在此不予討論

46 6-3-7 Indicial Equation for Higher Order Case (補充)
當 linear DE 為 nth order 時 當中的 r 可以由 求出 其中 k = 0, 1, 2, …., n −1

47 6-3-8 本節需要注意的地方 (1) Index 「對齊」的計算要小心 (建議可以向 power 較小的對齊,否則會出現負的 k)
本節需要注意的地方 (1) Index 「對齊」的計算要小心 (建議可以向 power 較小的對齊,否則會出現負的 k) 例如在 page 374 的 Step 2,一律對齊為 xk+r– 1 而非 xk+r (2) 若 x = 0 為 regular singular point, 設 x0 = 0 即可 (3) 如果是 ck 和 ck−1 (或 ck−1 和 ck) 的 recursive relation 其實有時可以立刻將 cn 的式子觀察出來 (但是分母不可變為 0) (4) 小心分母為 0 的情形 (如 page 380) (5) 小心算出來的 y2(x) 和 y1(x) 相同的情形 (如 pages 380, 381)

48 (6)別忘了將最後的解寫出 最後的解易出錯的地方: 別忘了乘上 xr (7) Interval of solution 依然要考慮,  且 interval 不包括任何singular point, 即使是 regular singular point (8) 複習長除法

49 Section 6-4 Special Functions
(本節這學期只教不考) Special cases of Sections 6-2 and 6-3  Bessel’s equation of order v Solution: : 1st kind Bessel function : 2nd kind Bessel function  Legendre’s equation of order n One of the solution: Legendre polynomials (See page 409)

50 其他名詞  Gamma function  modified Bessel equation of order v modified Bessel equation of the 1st kind modified Bessel equation of the 2nd kind Bessel 的另一種變型 解:c1Iv( x) + c2Kv(x)

51 Bessel’s Equation Solving for Bessel’s equation of order v Steps 1~3 將 代入 經過一些計算 (See text pages 262, 263) 得出 Step 4 two roots: v and −v Step 5

52 Step 6 當 r = v 當 r = −v 由於 c1 = 0, c3 = c5 = c7 = c9 = ….. = 0 when r = v when r = −v

53 6.4.1.2 Gamma function: a generalization of n!
properties of Gamma function (1) when n is a positive integer (2) 參照課本 Appendix 1

54 (3) when n is a negative integer or n = 0 (4) (4) (x) (3) (1) (2) x

55 6.4.1.1 回到 Solving for Bessel function
when r = v Set

56 同理,當 r = −v set Two independent solutions of the Bessel’s equation 代入 When r = v When r = −v 稱作 Bessel functions of the first kind of order v and −v

57 6.4.1.3 Bessel function of the second kind
注意,兩個 roots 的差為 2v (1) 當 2v 不為整數時,Bessel’s equation 的解即為      c1Jv(x) + c2J−v(x) (也可表示成 c1Jv(x) + c2Yv(x)) (2) 當 2v 為整數,但 v = m + 1/2 (m 是一個整數) 時,Bessel’s equation 的解亦為 c1Jv(x) + c2J−v(x) (也可表示成 c1Jv(x) + c2Yv(x)) (3) 當 2v 為整數,且 v 是一個整數時, Bessel’s equation 的解為          c1Jv(x) + c2Yv(x) Yv(x): Bessel function of the second kind of order v (見後頁)

58 Yv(x): Bessel function of the second kind of order v
當 m 為整數時, Ym(x) 定義成 用 L’Hopital’s rule 來算

59 6.4.1.4 Bessel function of the 1st kind (order m 為整數時)的性質
(1) J0(0) = 1, Jm(0) = 0 for m  0 (2) Zero crossing 的位置,隨著 m 增加而越來越遠 (見 Table 6.4.1)

60 (3) (4) (5) (6) when m is an integer when m is an integer 見 Example 6, text pages 268, 269

61 6.4.1.5 Bessel function of the 2nd kind (order m 為整數時)的性質
(1) (2) Zero crossing 的位置,隨著 m 增加而越來越遠

62 Bessel’s equation 的變型 解:c1Jv(x) + c2Yv(x) 解:c1Jv( x) + c2Yv( x) (A) Proof: Set t = x Similarly, 原式 = 對 t 而言是 Bessel equation y = c1Jv(t) + c2Yv(t) = c1Jv( x) + c2Yv( x)

63 (B) modified Bessel equation of order v
解:c1Iv( x) + c2Kv(x) 其中 稱作是 modified Bessel function of the first kind of order v 稱作是 modified Bessel function of the second kind of order v 當 v 為整數時,也是取 limit

64 (C) 解: 式子有點複雜,但可以用來解許多物理上的問題 Example 4 (text page 266)

65 6.4.1.7 Spherical Bessel Functions
Jv(x) 當 時,稱作為 spherical Bessel functions

66 6.4.2 Legendre’s Equation 6.4.2.1 Legendre’s Equation
代入,得出 (過程見text pages 270, 271) Two linearly independent solutions are

67 (a) When n is not an integer, both the two solutions have infinite number of terms.
(b) When n is an even integer, y1(x) has finite number of terms. In y1(x), the coefficient of xk is zero when k > n. (c) When n is an odd integer, y2(x) has finite number of terms. In y2(x), the coefficient of xk is zero when k > n. y1(x) when n is an even integer and y2(x) when n is an odd integer are called the Legendre polynomials (denoted by Pn(x)).

68 通常選 (讓 Pn(1) 一律等於 1) 由 y1(x) 由 y2(x)

69 Legendre polynomials Interval: x  [−1, 1]

70 6.4.2.2 Properties of Legendre Polynomials
(1) even / odd symmetry (2) (3) when n is odd (4) when n is even (5) recursive relation Rodrigues’ formula (6)

71 (7) If m  n orthogonality property (8) 若任何在 x  [−1, 1] 區間為 continuous 的函式 f(x) 皆可表示為 由於 根據 orthogonality property 所以 Orthogonality property 才是 Legendre polynomials 最重要的性質

72 6.4.2.3 補充:其他常見的 orthogonal polynomial
 Chebychev polynomials 電子學和 filter design 常用 They are the solutions of  Hermite polynomials 電磁波、光學、頻譜分析常用 They are the solutions of

73 6.4.3 Section 6-4 需要注意的地方: (1) 概念簡單,但是定義,性質,和數學式甚多 擇要而學即可
(2) 要了解 Gamma function

74 Review of Chapter 6 解法適用範圍: Linear DE,且 coefficients 最好為 polynomials
 當 Pm(x) 在 x = x0 時為 analytic x0 為 ordinary point 代入求解  當 Pm(x) 在 x = x0 時不為 analytic  但是 (x − x0 )n −mPm(x) 在 x = x0 時為 analytic x0 為 regular singular point 代入求解 有時,另一個解為

75 Exercise for practice Sec. 6-1: 4, 9, 12, 24, 30, 32, 34 Sec. 6-2: 2, 10, 13, 18, 20, 22, 23, 26, 27 Sec. 6-3: 4, 9, 13, 16, 22, 24, 26, 28, 29, 31, 33, 36 Review , 7, 10, 14, 19, 20

76 Chapter 7 The Laplace Transform
作用:把微分變成乘法 Chapter 4 曾經提過 可寫成 Laplace transform可以將 變成

77 Section 7-1 Definition of the Laplace Transform
Definitions  Laplace Transform of f(t) 經常以大寫來代表 transform 的結果

78 Laplace Transform is one of the integral transform
把一個 function 變成另外一個 function  integral transform: 可以表示成積分式的 transform  kernel 對 Laplace transform 而言 a = 0, b   註:Chap. 14 將教到的 Fourier transform, 也是一種 integral transform

79 Linear Property 事實上,所有的 integral transform 都有linear property

80 7-1-3 The Laplace Transforms of Some Basic Functions
f(t) F(s) 1 t n exp(at) sin(kt) cos(kt) sinh(kt) cosh(kt) (彼此密切相關)

81 Example 1 (text page 280) (1) 比較正式的寫法是 (2) 這裡假設 Re(s) > 0, 所以

82 Example 2 (text page 280)

83 Example 3 (text page 280) stable Pole (分母為0 的地方) 在複數平面左半邊 unstable Pole 在複數平面右半邊 Im(s) Re(s) s = -3

84 Example 4 (text page 281) 除了課本的解法之外, 另一個解法 Example (text page 281)

85 7-1-4 When Does the Laplace Transforms Exist?
Constraint 1 for the existence of the Laplace transform : For a function f(t), there should exist constants c, M > 0, and T > 0 such that for all t > T In this condition, f(t) is said to be of exponential order c Fig

86 Example: f(t) = t, e−t, 2cost 皆為 exponential order 1
Fig (a) (b) (c) 補充:其實,對一個function 而言, exponential order c 不只一個 例子: f(t) = tn 為 exponential order c, c > 0 There exists an M such that if c > 0

87 Example: f(t) = exp(t2) 時,並不存在一個 c 使得
for all t > T Fig 只要有一個 c 使得 for all t > T 我們稱 f(t) 為 of exponential order 否則,我們稱 f(t) 為 not of exponential order

88 Constraint 2 for the existence of the Laplace transform :
f(t) should be piecewise continuous on [0, ) 在任何 t  [a, b] 的區間內 (0  a  b < ) f(t) 為 discontinuous 的點的個數為有限的 稱作是「piecewise continuous」 Fig 注意: 1/t 不為 piecewise continuous

89 Constraints 1 and 2 are “sufficient conditions”
若滿足 Laplace transform 存在 若不滿足 Laplace transform 未必不存在

90 反例: f(t) = t−1/2 不為 piecewise continuous
但是 Laplace transform 存在 補充說明: f(t) = t−1/2 不為 piecewise continuous 是因為 f(0)   所以 f(t) 在 t = 0 附近有無限多個不連續點 事實上,只要 f(t1)  , |t1| is not infinite, f(t) 必定不為 piecewise continuous

91 Theorem 7.1.3 If f(t) is piecewise continuous on [0, ) and of exponential order, then

92 Section 7-1 需要注意的地方 (1) Laplace transform of some basic functions 要背起來 (2) 記公式時,一些地方要小心 sin, sinh, 1/tn 沒有平方 sin kt 有平方 (3) 熟悉(a) 包含 exponential function 的積分 以及 (b) 的積分技巧 (4) 要迅速判斷一個式子當 t  時是否為 0 (5) 小心正負號

93 附錄七:充分條件和必要條件的比較 If A is satisfied, then B is also satisfied :
A is the sufficient conditions of B (充分條件) A B If B is satisfied, then A is bound to be satisfied : A is the necessary conditions of B (必要條件) B A B is satisfied if and only if A is be satisfied : A is the necessary and sufficient conditions of B (充分且必要的條件)


Download ppt "期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多"

Similar presentations


Ads by Google