Download presentation
Presentation is loading. Please wait.
1
Universe cools: n=nEQe-m/T
2.2 Dark Matter Constraints Relic Density (WMAP) Thermal equilibrium ff Universe cools: n=nEQe-m/T (i) Lightest nurtralino solely composes cosmic dark matter Freeze out (ii) Relic density in 2 range (not only upper bounded) 1018 秒
2
考虑不同的超对称模型 考虑现有的实验限制 扫描超对称的参数空间 在可存活的参数空间内:
考察暗物质与核子的散射,看CDMS/XENON目前的限制及未来探测前景? 考察超对称黑格斯在LHC上的信号,看能否被LHC发现?
3
扫描超对称的参数空间
4
暗物质与核子的散射 (for CDMS/XENON)
5
黑格斯在LHC上的信号
6
3 Direct Detection of SUSY Dark Matter
Red: CDMS-II covered region Blue: SuperCDMS(25kg)/XENON100 (6000 kg-day) Green: beyond SuperCDMS/XENON100 CDMS-II already make sense in testing SUSY!
7
LSP (DM) property bino-like singlino-like CDMS/XENON will push LSP more bino-like
8
CDMS-II push LSP (DM) more bino-like
CDMS/XENON push up value higgsino component decrease bino component increase
9
CDMS/XENON push up chargino (finally 2*LSP)
10
CDMS/XENON push up charged-Higgs
11
SM-like Higgs may decay to DM
12
How about split-SUSY ?
13
4 LHC MSSM-Higgs Search charged-Higgs: almost unaccessible ATLAS
14
neutral-Higgs (H,A) at LHC
CMS
15
5. Conclusion 超对称 SUSY-DM @ CDMS/XENON 谢 谢 ! SUSY-Higgs @ LHC
Given SUSY: 两类实验相互关联 两类实验的interplay: 检验超对称 谢 谢 !
Similar presentations