Presentation is loading. Please wait.

Presentation is loading. Please wait.

AL GEOG Soil 土壤.

Similar presentations


Presentation on theme: "AL GEOG Soil 土壤."— Presentation transcript:

1 AL GEOG Soil 土壤

2 The open soil system 開放系統
Evapo-transpiration Solar energy water gas Nutrients from weathered parent rock

3 About soil Regolith 風化殼 : the layer of weathered rock fragments which covers most of the earth’s land area 地球表面上的陸地覆蓋著風化的岩石碎塊。 Soil 土壤(true soil真土) : results from the addition of water, gases, living organisms and decayed organic matter (humus腐殖質) It is a natural surface layer containing living matter and capable of supporting plants. Pedology 土壤學: the study of soil, its origins and characteristics

4 Components of soil 土壤的成份
Inorganic particles (minerals)礦物質 40% Organic matter有機物質 Colloids 膠結體10% Living organisms生物5% Gases土壤空氣 % Soil water土壤水分

5 土壤的重要性 它是聯繫有機界和無機界的重要環節,並結合地理環境各組合的樞紐。 土壤中的礦物質及有機物是供應陸生植物生長的天然媒介。
維持物質循環的重要部分。

6 Soil formation成土因素 S = f (c, o, r, p, t) Parent material 母質
Topography / relief 地形 Climate 氣候 Organism (biota) 生物 Time 時間

7 成土因素

8 1. 母質 成土因素 土壤是由岩石風化而成,岩石的成分和特性都影響土壤的特性。
土壤形成的塊狀岩體,稱為母岩(Parent rock)。母岩的風化物,稱為母質(Parent material)。 母質構成土壤的礦物質。 母質對土壤的性質(nature)、質地(texture)、結構(structure)、顏色(colour)和成分(property)均有影響。尤以成土初期較明顯。當土壤成熟後,這因素的影響力下降,甚至被其他因素完全遮蔽。 母質的差異,影響成土的快慢和土層的厚薄。

9 成土因素 2. 地形 不同地形可能有不同的母質。山地上部或台地多殘積母質(residues),低地和山麓多是坡積物母質(colluvium),河流階地和沖積平原多是沖積母質(alluvium) 地形影響地表水和地下水的分佈,影響土壤中的物質轉移。在山坡上,排水迅速,土壤含水量較低。在平坦地面上,如果泥土或岩石下屬排水不良,出現地下水位上升至地面情況,令有機物質累積。 地形影響土壤侵蝕作用。坡度越大,侵蝕作用越強,水分和養分流失越多,土層越薄。 所以緩坡土壤層較陡坡厚。

10 成土因素 2. 地形 土鏈(soil catena) → 在不同地形上,泥土剖面的變化。在陡坡上,土層厚度減少。在平坦土地上,土層厚。在沼澤地區,形成泥炭層(peat)。 高度、坡度和坡向影響熱量吸收及接受盛行風的影響,使土壤的水分和溫度狀況發生變化。例如高度上升、溫度下降、水分數量下降。背陽坡,溫度低,濕度大,日照數量小。 地形可透過影響植物生長來影響土壤。

11 A catena: the relationship between soils and topography土鏈
脫落區 傳送區 接收區

12 3.氣候 成土因素 a. 降水/水分狀況 水分影響土壤中的化學作用和生物活動。 潮濕多雨地區,鹽分淋失,泥土呈酸性。土壤養分下移,肥力下降。
乾燥地區,蒸發大於降水,土壤中水分上升,令鹽分在地表積聚,形成硬磐(hard pan)。 降水多的地區(降雨量>600毫米),形成淋餘土或鐵鋁土 (pedalfer soil) 。 雨量少的地區(降雨量<500毫米),形成鈣層土。(pedacal soil) 脫硅作用(desilication)﹕硅質隨水分下移被沖至泥土下層,多在熱帶雨林發生。

13 3.氣候 成土因素 b. 溫度 直接影響風化作用速度,決定土層厚薄。 影響有機物的合成和分解、生物化學作用。
溫度每上升10ºC,化學作用增加一倍。 寒帶地區,溫度低,風化作用、生物化學作用微弱,土壤發育緩慢,處於原始階段。土壤多受物理崩解形成碎屑物質,顆粒粗大。 熱帶地區,高溫多雨,礦物除石英外多被分解,顆粒較小。植物生長迅速,有機物質積聚快,但分解亦快,形成O層薄,腐殖質少。 溫度影響土壤中水分移動方向。在溫度高,蒸發率高地區,水分在泥土中向上移動,令鹽分積聚。

14 3.氣候 c. 風速 增加蒸發作用,加速土壤中水分流失。 在乾燥地區,強風會將表面土壤帶走,令養分流失。
成土因素 3.氣候 c.       風速 增加蒸發作用,加速土壤中水分流失。 在乾燥地區,強風會將表面土壤帶走,令養分流失。 (註﹕無論土壤的母質如何,在同一氣候狀況下,經過相當的時間,土壤的特性將會十分相似。)

15 4. 生物 植物 成土因素 土壤與植物間的物質交換。 植物腐爛分解供給有機物質給土壤。 植物根部鞏固土壤。
植物產生截流作用(interception),令土壤侵蝕減少。 森林減低風速,遮蔽陽光,減少水分蒸發,使分解作用不停進行。 植物吸收鹽基養分,養分被吸收後,經分解作用再釋放回土壤中。 植物根部有助風化,令空氣及水分流通。

16 4. 生物 微生物:細菌、真菌及分解者影響土壤的養分循環,令土壤保持養分流動。
成土因素 4. 生物 微生物:細菌、真菌及分解者影響土壤的養分循環,令土壤保持養分流動。 土壤動物:鑽土動物影響土壤結構和性質,令土壤的物理及化學作用活躍。 人類活動:耕作、施肥、伐林、灌溉、保護植被…..等

17 5. 時間 土壤的特性需要時間來發展。 土壤在穩定的氣候環境下,經過長時的發育,造成成熟的土壤剖面。(含有數個顏色、特性都各不相同的層次。)
成土因素 5. 時間 土壤的特性需要時間來發展。 土壤在穩定的氣候環境下,經過長時的發育,造成成熟的土壤剖面。(含有數個顏色、特性都各不相同的層次。) 年幼的土壤,各土層層次的特徵並不明顯。 時間影響其他成土因素的重要性。在土壤形成初期,母質因素日最重要。但土壤形成後,其他因素的重要性日漸提高。

18 典型土壤剖面 Soil profile A horizon B horizon Soil C horizon Parent rock
Zone of eluviation B horizon Zone of illuviation Soil C horizon Regolith Parent rock

19 例:英國典型土壤剖面 枯枝落葉 半分解有機層 腐殖質 表 土 暗色腐植質 混合層 淺色灰化層 底 土 鐵鋁氧化硅層,呈棕紅色 風化層 礦物層

20

21 土壤剖面 土壤在發育時,除非受到不斷的沖刷,否則必會逐漸積聚變厚,成為土層。
由地面向下直至成土母質的土壤垂直剖面,明顯由若干層次組成。這些層次的顏色、質地、結構和物質組成均有差異,由這些連續層次所構成的剖面稱為土壤剖面。 發育良好的土壤剖面,大致可分為O、A、B、C四層 O層 → 有機質層(Organic layer),可以分為O1層(殘落物)和O2層(腐殖質)。 A層 → 淋溶層(Zone of eluviation),可以分為A1、A2和A3層。 A1層又名腐殖質混合層,有機物質豐富,呈深色。 A2層是真正的淋溶層,礦物受雨水溶解,帶到泥土下層,所以顏色較淺,養分不多。 A3層是轉換層或過渡層,是由A層過渡至B層的區域,性質近似A層多於B層。

22 土壤剖面 B層 → 澱積層( zone of illuviation),是承受由A層淋溶下來的物質沉澱所形成的土層,亦可以分為B1、B2和B3層。 B1層亦是轉換層或過渡層,但性質近似B層多於A層。 B2層又名富集層或洗入層,為一最大的沉積帶,是A層淋溶而下的礦物積聚處。 B3層是由B層過渡至C層的區域,性質近似B層多於C層,稱為轉換層或過渡層。 C層 → 母質層或底土層(regolith),由岩石風化碎屑殘積物組成。它是土壤發育的母體,很大程度上保留母岩的特徵。 C層以下是未經風化的堅硬岩層。

23 土壤的成份 Soil properties 礦物成分 mineral matter / inorganic matter
土壤質地 soil texture 土壤結構 soil structure 有機物 organic matter / humus 土壤養分 soil nutrients 土壤酸鹼度 soil acidity 土壤生物 soil organisms / biota 土壤水分 soil moisture

24 土壤中的礦物質通常是由形成土壤的母質岩石所供應,亦有部份可能是從沉積物中獲得。
土壤的成份 1.礦物成分 土壤中的礦物質通常是由形成土壤的母質岩石所供應,亦有部份可能是從沉積物中獲得。 主要是母質岩石經過風化作用後所形成的。 原生礦物(Primary minerals)通常對化學風化抵抗力較强,但容易受物理風化。例如荒漠的石英砂粒。 次生礦物(Secondary minerals)由多種化學風化後而生,例如黏粒或鐵鋁氧化硅。 土壤中礦物顆粒大小影響土壤質地、土壤疏水程度和土壤透氣程度。

25 根據礦物質的體積大小,可以分為下列四種﹕ 黏粒 clay → 顆粒直徑少於0.002毫米
土壤的成份 2.土壤質地 土壤質地是指土壤中的顆粒大小分佈。 土壤顆粒可以分為礫石(pebbles / stones)、砂粒(sand)、粉砂 (silt) 和 黏粒 (clay)。不同顆粒比例組合而成的土壤質地,影響土壤的疏水性和空氣循環。 根據礦物質的體積大小,可以分為下列四種﹕ 黏粒 clay → 顆粒直徑少於0.002毫米 粉砂粒 silt → 顆粒直徑0.002毫米至0.02毫米 幼砂粒 fine sand→ 顆粒直徑0.02毫米至0.2毫米 粗砂粒 coarse sand → 顆粒直徑0.2毫米至2.0毫米

26 美國農業部將土壤質地,按砂粒、粉砂粒和黏粒不同組成分量劃成三角表(triangular graph),大致可以分為四大類﹕砂土類(Sandy soil)、壤土類(loamy soil)、黏壤土類(clay loamy soil)和黏土類(clay soil)。

27 土壤質地分析 27% 10% 63% 30% 34% 36% 40% 18% 42% 11% 20% 69%

28 土壤質地:量度方法 篩選法 沈澱法

29 土壤質地:重要性 不同質地的土壤決定了其持水力、保肥能力、透氣程度和保溫能力。
以土壤的持水力而言,砂土保持水分最少,黏土最多,壤土中等。砂土由於疏水程度高,保肥能力較差。黏土透水性差,土壤保肥性強。

30 Sandy soil : well-drained and aerated – easy to cultivate and permit crop roots – but vulnerable to drought Silty soil : lack of mineral and organic nutrients clay soil : rich in nutrients and organic matter – prone to waterlogging and become gleyed (潛育化) Loam : 40% sand; 40% silt; 20% clay – ideal soil for agriculture

31 土壤質地:重要性 土壤質地影響泥土中的陽離子交換量(cation exchange capacity),反映土壤化學活動程度,影響土壤的肥沃度。土壤顆粒越細,表面積越大,故能吸收和保持大量的養分。一般土壤顆粒表面都帶負電荷,使帶靜電的陽離子(鹽基離子﹕鈣、鉀、鈉、錳等)被吸引到黏粒表面,令養分不易被帶走。

32 土壤顆粒很少呈單粒存在,通常會聚積成大小不同、形狀各異的團聚體(aggregates),各團聚體的組合排列稱為土壤結構。
土壤的成份 3.土壤結構 土壤顆粒很少呈單粒存在,通常會聚積成大小不同、形狀各異的團聚體(aggregates),各團聚體的組合排列稱為土壤結構。 土壤結構可以分為四大類﹕粒狀結構(granular structure)、塊狀結構(blocky structure)、柱狀結構(prismatic structure)和片狀結構(platy structure)。 土壤結構影響土壤疏水和透氣程度。在各類結構中,柱狀結構疏水性最高,片狀結構則最低。對植物而言,粒狀結構和塊狀結構較為理想。

33 土壤的成份 3.土壤結構 granular: fairly productive platy: the least productive
crumb : the most productive granular: fairly productive prismatic: quite productive platy: the least productive

34 土壤有機物質包括動植物死亡以後遺留在土壤中的殘體、施入的有機肥料和經過微生作用所形成的腐殖質(humus)。
土壤的成份 4.有機物 土壤有機物質包括動植物死亡以後遺留在土壤中的殘體、施入的有機肥料和經過微生作用所形成的腐殖質(humus)。 腐殖質佔土壤中有機物質的70-90%,對土壤的肥力影響很大。 土壤中有機物質可見於三層﹕ L 層 / 枯枝落葉層 / 殘落物 ( Leaf litter layer)→ 植物的枯枝落葉或動物的屍體,分解作用並未開始。 F層 / 半分解的殘落物 (Fermentation layer) → 半分解的殘落物,分解速度最快,仍有殘餘部分可見。 H層 / 腐殖質(Humus layer) →殘落物已完全分解,呈黑色或褐色。

35 土壤中有機物質的轉化過程主要由微生物負責。微生物將複雜的有機物質轉化為簡單的無機化合物供植物吸收。
土壤的成份 4.有機物 土壤中有機物質的轉化過程主要由微生物負責。微生物將複雜的有機物質轉化為簡單的無機化合物供植物吸收。 腐殖質是養分的主要來源。它與黏粒結合造成黏粒腐殖質複合體 (clay-humus complex) 成為肥沃土壤,因為持水力與養分均高。 腐殖質亦可鎖住土粒的黏質,使土壤內聚力增加,抵抗侵蝕。

36 基本元素 Primary elements: 碳 C : Carbon 氫 H : Hydrogen 氮 N : Nitrogen
土壤的成份 5.土壤養分 基本元素 Primary elements: 碳 C : Carbon 氫 H : Hydrogen 氮 N : Nitrogen 氧 O : Oxygen 次要元素 Secondary elements: 鈣 Ca : Calcium 鎂 Mg : Magnesium 鉀 K : Potassium 鈉 Na : Sodium 磷 P : Phosphorus

37 土壤養分的來源 雨水溶解 solution in rainwater 肥料 fertilizer
由母岩風化而來的礦物質 minerals (正離子 Cation) 黏粒腐殖質複合體 clay-humus complex (負離子 Anion )

38 土壤中大量的養分,包括礦物或有機質,均屬於儲備狀態,不能被植物利用,是為無效狀態。
土壤的成份 5.土壤養分 土壤養分可分為無效態和有效態。 土壤中大量的養分,包括礦物或有機質,均屬於儲備狀態,不能被植物利用,是為無效狀態。 透過化學風化和有機質礦質化作用,養分可被釋放出來,從而轉為可被植物利用的有效狀態。 有效狀態的養分有兩種可能去向: 直接進入土壤溶液,成為自由離子,被植物直接吸收或被淋溶流失 被土壤膠體吸附在表面,與植物根部表面進行陽離子交換作用

39 The Gouy layer Anion 陰離子 Cation 陽離子 黏粒腐殖質複合體表面是陰離子,吸引大量陽離子黏附。A film of cations (+) around a clay-humus particle(-)

40 陽離子交換作用 Cation exchange
1. 黏粒腐殖質複合體有巨大表面,氧原子(陰離子)最接近表面帶負電荷 4. 植物釋放大量氫離子,在根部表面附近非常活躍 5.因為氫離子較其他陽離子活躍,故此在黏粒與根表面之間有等值的陽離子交換 6. 植物根部吸收基性礦物質 7. 陽離子交換後土壤變酸 2. 土壤中的陽離子,來自岩石的風化及腐解物質 3. 可溶性的鹽基,隨水流下滲,成為帶正電荷的陽離子被吸引附在黏粒表面

41 土壤的酸鹼反應,主要以土壤溶液中的H+和OH–的濃度對比而決定。 當H+濃度大於OH–時,土壤呈酸性 ,反之呈鹼性,相等時為中性。
土壤的成份 6.土壤酸鹼度 土壤的酸鹼反應,主要以土壤溶液中的H+和OH–的濃度對比而決定。 當H+濃度大於OH–時,土壤呈酸性 ,反之呈鹼性,相等時為中性。 土壤的酸鹼度以pH值(pH value)來顯示,值由1至14。 pH等於7時,土壤呈中性 (neutral) pH值大於7時,土壤呈鹼性 (alkaline) pH值小於7時,土壤呈酸性 (acidic)

42 自然土壤的酸鹼度,主要受母岩和氣候影響。 如花崗岩母質多淺色礦物,風化釋放的鹽基離子較少,故呈酸性。石灰岩成分是CaCO3 呈鹼性。
土壤的成份 6.土壤酸鹼度 自然土壤的酸鹼度,主要受母岩和氣候影響。 如花崗岩母質多淺色礦物,風化釋放的鹽基離子較少,故呈酸性。石灰岩成分是CaCO3 呈鹼性。 降水多的地區淋溶强度大,淋洗大量鹽基離子,故此濕潤地區土壤往往呈酸性,乾旱少雨地區保存大量鹽基離子,使土壤呈中性或鹼性。 土壤酸鹼度影響土壤的肥力,而不同的植物對土壤酸鹼度的適應性不同。如茶樹、水稻喜酸性,大麥喜中性泥土,苜蓿和棉花抗鹼能力較強。一般作物在弱酸至弱鹼都適宜。

43 分解作用decomposition:例如蚯蚓、白蟻、蛞蝓等腐屑動物,或真菌、細菌等
土壤的成份 7.土壤生物 作用: 分解作用decomposition:例如蚯蚓、白蟻、蛞蝓等腐屑動物,或真菌、細菌等 固氮作用 nitrogen fixation :N2  NO3 土壤結構發展:例如抓緊土粒、疏氣排水

44 Where W = water in soil土壤水分 R = rainfall 降水 E = evaporation 蒸發
土壤的成份 8.土壤水分 W  R – (E + T + D) Where W = water in soil土壤水分 R = rainfall 降水 E = evaporation 蒸發 T = transpiration 蒸騰 D = drainage 流水

45 土壤水分的流動

46 土壤的成份 8.土壤水分

47 吸濕水Hygroscopic water : 幾層很薄的水膜被土壤固體牢牢束縛住,不能被植物根系吸收,是無效水。
土壤的成份 8.土壤水分 吸濕水Hygroscopic water : 幾層很薄的水膜被土壤固體牢牢束縛住,不能被植物根系吸收,是無效水。 毛管水Capillary water : 吸持在土壤微空隙的水分,是液態、可以流動的水,並能抵抗重力作用保持在土壤中,可以被植物根系吸收,是有效水。 重力水Gravitational water: 當土壤中大部分空隙被水充填,排除空氣,處飽和狀態,是為重力水。重力水不利於植物根系吸收, 亦是無效水。但水分會有繼續向下運動,故此僅是短時間存在。

48 最大持水量 Maximum retentive capacity: 若土壤表面水源充足,水分會不斷下滲,填滿土壤空隙,排走空氣。
土壤的成份 8.土壤水分 最大持水量 Maximum retentive capacity: 若土壤表面水源充足,水分會不斷下滲,填滿土壤空隙,排走空氣。 當土壤含水量達到飽和,是為最大持水量 。 田間持水量Field capacity : 能抵抗重力作用而保持在土壤中的含水量,是為田間持水量。 即水分不再下滲,是因大空隙的水分已流走,被空氣佔據,只剩下部分水分存在微空隙間,可以透過毛細管作用被植物吸收。

49 當不斷的蒸發和蒸騰,只有少量水分存在極小微空隙間,土壤吸水力超過植物吸水力,植物便不能利用這些水而出現凋萎現象。此時的含水量稱為凋萎點。
土壤的成份 8.土壤水分 凋萎點Wilting point : 當不斷的蒸發和蒸騰,只有少量水分存在極小微空隙間,土壤吸水力超過植物吸水力,植物便不能利用這些水而出現凋萎現象。此時的含水量稱為凋萎點。 吸濕系數Hydroscopic coefficient: 當土壤顆粒表面有緊附的水分子,既不能被植物吸收,也不能自然蒸發,這種含水量稱為吸濕系數。

50 土壤的成份 8.土壤水分 Hydroscopic water Capillary water Gravitational water
Maximum retentive capacity Hydroscopic Coefficient Wilting point Field capacity Hydroscopic water Capillary water Gravitational water

51 土壤發育過程 Soil forming processes
腐殖作用 有機分類 鈣化作用、鹽化作用 轉換作用 淋溶作用 潛育化作用 毛細管作用 灰化作用、鐵鋁化作用 風化作用

52 地球表面主要氣候、植被及土壤類型 Coniferous forest Temperate grassland Desert
Tropical rain forest Mixed forest Semi-arid grassland Tropical grassland Tundra Gleyed soil Podsols Chernozems Histosols Alfisols Chestnut soil Vertisols Aridisols Latosols

53

54 Soils in the world

55 主要的成土作用 鐵鋁化作用Ferrallitization 灰化作用 Podsolization 鹽化作用 Salinization
鈣化作用 Calcification 潛育化作用 Gleying

56 Oxisols氧化土 Laterization 磚紅壤作用

57 氧化土 Oxisols

58 氧化土剖面

59 Oxisols (Oxic horizon, highly weathered)
The Oxisols氧化土are the most highly weathered soils in the classification system. They form in hot climates with nearly year round moist conditions; hence, the native原生 vegetation is generally thought to be tropical rain forest (TRF). Their most important diagnostic feature 徵狀 is a deep oxic 氧化 subsurface 次土 horizon. This horizon is generally very high in clay-size 黏粒particles have removed a large part of the silica 硅 from the silicate materials in this horizon. Usually the boundaries between subsurface horizons are indistinct, giving the subsoil a relatively uniform appearance with depth.

60 Oxisols Usually the boundaries 界限 between subsurface horizons are indistinct 不明顯, giving the subsoil a relatively uniform 一致appearance with depth. Oxisols are resistant 抵抗 to compaction 壓迫, so water moves freely through the profile. The depth of weathering in Oxisols is typically much greater than for most of the other soils, 20 m or more having been observed.

61 Oxisols The low activity 低活躍 clays have a very limited capacity 有限容量 to hold nutrient養分 cations 陽離子 such as Ca, Mg and K, so they are typically of low natural fertility and moderately 中度 acid. The high concentration 集中 of iron and aluminum oxides 鐵鋁氧化物 also gives these soils a capacity to bind 結合 so tightly with what little phosphorus 磷 is present, that phosphorus deficiency 不足often limits plant growth once the natural vegetation is disturbed.

62 Oxisols : Distribution and use
Oxisols are found on about 8% of the world's land. They occupy old land surfaces and occur mostly in the tropics 熱帶. Large areas of Oxisols occur in South America and Africa. New data from Brazilian soil scientists suggests that some of the areas of the Amazon Basin 阿馬遜盆地 currently mapped as Oxisols are in reality dominated by Ultisols and other soils. In the humid 濕潤 areas of central Africa 中非 , Oxisols are prominent 明顯 and in some cases dominate.

63 Oxisols: Distribution
Millions of people in the tropics depend on them for food and fiber 纖維production. However, because of their low natural fertility, most Oxisols have been left under forest vegetation or are farmed by shifting cultivation遷移農耕 methods.

64 Laterization A pedogenic process成土過程 formerly believed to have led to the formation of laterite磚紅壤 in the humid tropics. However, the use of this term had been discontinued since the 1960s and the resultant soil was subsequently renamed as latosol 磚紅壤. The formation of latosol involves several processes : intense weathering, desilication 脫硅作用 and plinthization 硬化作用. Intense weathering of rock minerals results in the release of silic (desilication), alkali and alkline earths from the primary silicates. Alkali and alkaline earths 鹼性土are completely leached out of the profile.

65 The released silica (SiO2) either combines with alumina 氧化鋁 (Al2O3) to form kaolinite 高嶺土(Al2O3.2SiO2.2H2O) or is leached. The soil is thus impoverished in silica, but enriched with iron oxides 氧化鐵(Fe2O3.nH2O) and hydroxides 氫氧化鐵(FeO.OH). The decrease in silica can also be relative, and caused by deposition of sesquioxides 鐵鋁氧化物 (R2O3) transported laterally with groundwater coming from higher surroundings. A combination of these two types of desilication results in the formation of the oxic mineral horizon or the plinthite layer 磚紅壤層underneath the surface.

66 This plinthite layer consists of weathered mixtures of sesquioxides 鐵鋁氧化物 , clay黏土 and quartz sand 石英沙. It is poor in humus and is at least 30 cm thick. Under high rainfall conditions and where there is no erosion of the land, this plinthite layer remains soft all the time.

67 The plinthite layer hardens to form laterite (ironstone hardpans 硬磐) upon exposure to air, a condition favoured by alternate 交替的 reduction 還原作用 and oxidation 氧化作用, removal of the surface layer by erosion or by fluctuating groundwater level. The Mekong Project 湄公河計劃, for instance, not only reduces flooding but also causes irreversible不可轉回 hardening 硬化 of the plinthite. Similarly, deforestation 伐林 results in removal of the vegetative cover, soil erosion and exposure of the plinthite layer to air. This hardening process is called plinthization硬化作用.

68 Laterite is a brick hard material widely used in the construction industry and the external walls of the Asian Institute of Technology in Thailand was built of laterite which is sometimes regarded as the end product of tropical rock weathering.

69 Where the plinthite layer remains soft, the soil is called latosol which is widerspread throughout the equator, tropical, subtropical and even the Mediterranean regions 地中海區(9% of the world’s land). Most latosols are formed under rain forest vegetation, although in large areas the natural vegetation is tropical savannas. In China latosols can be found in Xishuangbanna 西雙版納 of Yunnan雲南, Hainan, Leizhou Peninsula雷州半島 of Guangdong, and southwest Taiwan.

70 The clay content of latosols is generally high and dominated by kalinaite, gibbsite (AL2O3.3H2O) and hematite (Fe2O3). They are of the low-activity, nonsticky type and are characterized by low silica-sesquioxide ratios of around 1.5 Latosols are red in colour, resistant to compaction, well aggregated結聚 and easy to till 開墾, and water moves easily through the profile.

71 Most latosols are infertile不肥沃, they are characterized by low base-exchange capacity基性量低, low content of the primary materials, and low content of soluble constituents成分. With good physical properties, however, latosol is potentially a productive soil when supplemented with adequate plant nutrients and where erosion is under control.

72 The nutrient deficiency problem can be corrected by the growth of perennial終年生 tree crops, such as rubber, coconut and peppers in China. Such cultures can restore the nutrient cycling system that characterized the soil-plant relationships before the rain forest was removed. The inclusion of legumes豆科植物 in crop rotation 輪耕 (e.g. peanuts) will provide additional nitrogen for uptake by the crops.

73 Aridisols 旱成土 Salinization 鹽土化

74 旱成土剖面

75 Aridisols (Dry soils) Aridisols occupy a larger area globally than any other soil (more than 12%). Water deficiency 水分不足 is a major characteristic of these soils. The soil moisture level 土壤濕度 is sufficiently high to support plant growth for no longer than 90 consecutive連續 days. The natural vegetation consists mainly of scattered 零散 desert shrubs 荒漠灌木 and short bunch grasses. Aridisols are light in color and low in organic matter.

76 Aridisols The processes of soil formation have brought about a redistribution of soluble materials 可溶性物質, but there is generally not enough water to leach 淋溶 these materials completely out of the profile. Therefore, they often accumulate累積 at a lower level in the profile. These soils may have a horizon of accumulation of calcium carbonate 碳酸鈣, gypsum 石膏, soluble salts , or exchangeable sodium 可交換鈉. Under certain circumstances, carbonates may cement 黏結 together the soil particles and coarse 粗粒 fragments 碎片 in the layer of accumulation, producing hard layers known as petrocalcic horizons 鈣化層.

77 Aridisols These hard layers 硬化層act as impediments 障礙物 to plant root growth and also greatly increase the cost of excavations 挖掘 for buildings. In rocky soils, erosion 侵蝕 may remove all the fine particles 幼粒 from the surface layers 表層, leaving behind a layer of wind-rounded pebbles that is called desert pavement 荒漠平台. Except where there is groundwater or irrigation 灌溉, the soil layers are only moist for short periods during the year.

78 Aridisols These short moist periods may be sufficient for drought-adapted 適應乾旱 desert shrubs and annual plants全年生植物, but not for conventional 常規 crop production 農作物生產. If groundwater is present near the soil surface, soluble salts may accumulate in the upper horizons上層 to levels that most crop plants cannot tolerate 忍受.

79 Aridisol : Distribution and use
Aridisols occur on nearly 12% of the land area worldwide. Vast areas of Aridisols are present in the Sahara desert 撒哈拉沙漠 in Africa, the Gobi 戈壁 and Taklamakan deserts 塔克拉瑪干沙漠 in China, and the Turkestan desert 土耳其斯坦沙漠of the former Soviet Union. Most of the soils of southern and central Australia are Aridisols, as are those of southern Argentina 南阿根庭, southwestern Africa, Pakistan 巴基斯坦, and the Middle East countries中東.

80 Aridisols : Distribution
Without irrigation, Aridisols are not suitable for growing cultivated crops 農作物. Some areas are used for low-intensity grazing低密度放牧, especially with sheep or goats, but the production per unit area is low. The overgrazing 過度放牧 of Aridisols leads to increased heterogeneity 混雜種類 of both soils and vegetation.

81 Aridisols : Distribution
The animals graze the relatively even cover of palatable 美味的 grasses, giving a competitive advantage 競爭優勢 to various shrubs not eaten by the grazing animals. The scattered shrubs compete against the struggling 爭扎求存的 grasses for water and nutrients. The once-grassy areas become increasingly bare 光秃 , and the soils between the scattered shrubs succumb 不能抵抗 to erosion 侵蝕 by the desert winds and occasional 偶發 thunderstorms雷暴.

82 Aridisols : Distribution
The desertification 荒漠化of areas of sub-Saharan 次撒哈拉 Africa and the western United States is evidence 證據of such degradation 降質. Some xerophytic 旱生 plants, such as a jojoba, have been cultivated on Aridisols to produce various industrial feedstocks 供應, such as oil and rubber. Where irrigation water and fertilizers 肥料are available, some Aridisols can be made highly productive 高度生產力.

83 Aridisols : Distribution
Irrigated valleys 灌溉谷地in arid areas are among the most productive in the world However, they must be carefully managed to prevent 防止 the accumulation of soluble salts.

84 Salinization 鹽化作用 Salinization is a pedogenic process 成土過程 of the desert climate regime where annual precipitation is less than 250 mm. It occurs in poorly drained 排水差 locations (e.g. valley floors 谷地, flats 平地and basins盆地 in the continental interior 大陸內陸) where surface runoff 地表徑流 evaporates, leaving behind large amounts of bicarbonates (HCO 3-), sulfates (SO 42- ) and chlorides (Cl -) of sodium, calcium and potassium.

85 These salts 鹽分 may be formed during the weathering of rocks and minerals or brought to the soils through rainfall and irrigation 灌溉. Other localized but important sources are fossil化石 deposits of salts laid down during geological time 地質年代 in the bottom of now extinct 消失 lakes or oceans or in underground saline water pools. They are most abundant in areas with precipitation - to- evaporation ratios 降水對蒸發比率 of 0.75 or less, and in low, flat areas with high water tables 地下潛水面 that may be subject to seepage 滲透 from higher elevations高度. The pH of saline soils is usually below 8.5.

86 Salinization alternates 交替出現 with desalinization 脫鹽作用, depending on aridity 乾旱度 of the climate and the seasonal distribution of rainfall. Where annual precipitation 年雨量 is below 250 mm, the salts in the soils are weakly eluviated 淋洗 in summer while in spring and autumn intensive evaporation enhances 增加 the accumulation of salts both in the surface soils表土 and subsoil 底土. Hence salt crystals or thin crust of salts 鹽殼 are common in soils of the continental interior (e.g. Xinjiang新疆, Qinghai 青海and the Hexi Corridor 河西走廊of Gansu甘肅).

87 The top 10 cm layer of the saline soils in northwest China contains as much as 10% salt, which is 14 times higher than nearby irrigated lands. Where salts accumulate as crust 鹽殼on the surface, the soil is vulnerable 脆弱 to desiccation脱水 and wind erosion風蝕, resulting in the decline of biological productivity生物生產力.

88 This problem can sometimes be aggravated 聚集by the construction of reservoir dam upstream (e.g. Tarim Basin 塔里木盆地 ) and the removal of vegetation (e.g. Tamarix chinensis and poplars 楊樹in northwest China during the Great Leap Forward Period大躍進時期)

89 土壤分類 (地帶性 Zonal soils)

90


Download ppt "AL GEOG Soil 土壤."

Similar presentations


Ads by Google