Download presentation
Presentation is loading. Please wait.
1
Advanced Statistics_DOE2
& 二水準部分階層實驗設計(2k-p) 2k-p Design具有k個因子,每個因子有兩個水準,共有2k-p次實驗。 2k Design所需之實驗次數隨k(因子數)之增加而據增,例如24=16、26=64、28=256、、、。然而,以26為例,64個實驗產生64-1=63個自由度,其中只有C61=6個自由度是主因子作用,C62=15個自由度是給兩因子之交互作用,卻有 =42個自由度是給三個(含)以上的因子交互作用。 故,若以專業知識可以假設多因子交互作用是不顯著的,且可以予以忽略(大多數情況是如此),則吾人只須做此2k個實驗中的部份實驗,即可瞭解主因子作用以及低階之因子交互作用。 &Seven Advanced Statistics_DOE2
2
Advanced Statistics_DOE2
2k-p實驗用途 2k-p Design主要用於實驗初期的Screening Experiments,用以從多數可能之因子中篩選出具有顯著作用之因子,以為之後更詳細實驗之依據。 可用於產品與製程之設計。 可用於製程上之問題排除。 &Seven Advanced Statistics_DOE2
3
Advanced Statistics_DOE2
2k-p基本理念 多數系統或製程之執行成效皆由主因子作用以及低階之因子交互作用所決定。 部份階層實驗可被進一步用來投入涵蓋部份重要因子之較大實驗。 兩個以上之部份階層實驗可被整合來估計所有主因子作用以及因子之交互作用 。 &Seven Advanced Statistics_DOE2
4
Advanced Statistics_DOE2
23-1設計 23 Design 分成兩個23-1 Designs。 符號表(一) &Seven Advanced Statistics_DOE2
5
部分階層設計之產生器(Generator)
ABC稱為此部份階層之產生器(Generator)。 &Seven Advanced Statistics_DOE2
6
Advanced Statistics_DOE2
23-1設計之圖示 第一組之ABC皆為+號,其產生器為 I = ABC。 第二組之ABC皆為-號,其產生器為 I = -ABC。 &Seven Advanced Statistics_DOE2
7
Advanced Statistics_DOE2
23-1 Design (I=ABC) 在23-1 Design (I=ABC) 中共有4次實驗,4-1=3個自由度,可被用來估算各因子之主作用。 &Seven Advanced Statistics_DOE2
8
Advanced Statistics_DOE2
23-1 對比差異與平均效應 ContrastA = abc+a-b-c ContrastAB = abc+c-a-b ContrastB = abc+b-a-c ContrastAC = abc+b-a-c ContrastC = abc+c-a-b ContrastBC = abc+a-b-c AEA = 1/2(abc+a-b-c) = AEBC AEB = 1/2(abc+b-a-c) = AEAC AEC = 1/2(abc+c-a-b) = AEAB &Seven Advanced Statistics_DOE2
9
Advanced Statistics_DOE2
Alias 關係 計算A平均效應之公式與計算BC平均效應之公式相同;亦即,當吾人利用上述之公式計算A之平均效應時,實際上,乃是在做A+BC之平均效應計算。此種現象稱之為Alias,以 lA A+BC 來表示。 所以,在23-1 Design (I=ABC)下之Aliases為 lA A+BC lB B+AC lC C+AB &Seven Advanced Statistics_DOE2
10
23-1 Design (I=-ABC)下之Aliases
l`A A-BC l`B B-AC l`C C-AB WHY? &Seven Advanced Statistics_DOE2
11
Advanced Statistics_DOE2
連續部分階層實驗 若吾人做兩階段之實驗皆為 23-1 Design,但第一次用 I=ABC,第二次用 I=-ABC,則因為 lA A+BC l`A A-BC 所以 (lA + l`A )/2 A (lA – l`A )/2 BC 吾人可清楚界定出主因子作用與兩因子交互作用之大小,但對ABC而言,則無法估算,此為部份階層實驗所必須犧牲。 &Seven Advanced Statistics_DOE2
12
部份階層實驗之解析度(Resolution)
定義: 一個具有解析度為R之設計,p-因子交互作用之效應不與R-p因子交互作用之效應相互Alias。 解析度Ⅲ之設計:沒有任何主因子作用與其他主因子作用相互Alias;但主因子作用卻和2因子交互作用相互Alias。如23-1 Design。 解析度Ⅳ之設計:沒有任何主因子作用與其他主因子作用或2因子交互作用相互Alias;但2因子交互作用卻相互Alias。如24-1 Design (I=ABCD)。 解析度Ⅴ之設計:沒有任何主因子作用與其他主因子作用或2因子交互作用相互Alias;但2因子交互作用卻與3因子交互作用相互Alias。如25-1 Design (I=ABCDE)。 &Seven Advanced Statistics_DOE2
13
Advanced Statistics_DOE2
2k-2 Design (1/4 階層設計) 2k-1 Design 需要一個 Generator I=ABCDE…. 最高階交互作用來構建。 2k-2 Design 需要兩個 Generators。 26-2 Design (I = ABCE = BCDF),建構之方式如2k-1 Design,下頁之表為利用第二種方式構建而成。 由於取 I=±ABCE 與 I = ±BCDF 共有4組,除了ABCE與BCDF外,應有另一個交互作用會被犧牲掉,此交互作用為 (ABCE)(BCDF) = AB2C2DEF = ADEF 所以完整之寫法應為 I=ABCE=BCDF=ADEF &Seven Advanced Statistics_DOE2
14
Advanced Statistics_DOE2
26-2 Design 符號表 &Seven Advanced Statistics_DOE2
15
26-2 Design (I = ABCE = BCDF=ADEF) 之Aliases
A = BCE = DEF = ABCDF B = ACE = CDF = ABDEF C = E = F = AB = BC = ABD = 完整之Aliases結構如下頁。 &Seven Advanced Statistics_DOE2
16
Advanced Statistics_DOE2
&Seven Advanced Statistics_DOE2
17
Advanced Statistics_DOE2
26-2 Design之計算 26-2 Design (I = ABCE = BCDF=ADEF) 共有16次實驗,16-1=15個自由度,可用以估算6個主因子作用及多數2因子交互作用。 其計算如下: ContrastA = ae+abf+acf+abce+adef+abd+acd+abcdef -(1)-bef-cef-bc-df-bde-cde-bcdf 平均效應: AEA = ContrastA / 8 SSA = ContrastA2 / 16 其他因子之計算同此方法。 &Seven Advanced Statistics_DOE2
18
Advanced Statistics_DOE2
26-2 Design_Example 範例: “262.DX5”, 26-2 Design (I = ABCE = BCDF=ADEF) 射出成型製程 A 因子:溫度 B 因子:轉速 C 因子:固定之時間長短 D 因子:循環時間 E 因子:孔徑大小 F 因子:壓力 反應變數 Y:收縮程度 &Seven Advanced Statistics_DOE2
19
Advanced Statistics_DOE2
&Seven Advanced Statistics_DOE2
20
Advanced Statistics_DOE2
&Seven Advanced Statistics_DOE2
21
Advanced Statistics_DOE2
一般2k-p Design 需要p個產生器(Generators)。 24-1 Design (I=ABCD) 26-2 Design (I = ABCE = BCDF) 每一作用(Effect)有2p個Aliases。 23-1 Design (I=ABC)中,lA A+BC 26-2 Design (I = ABCE = BCDF) 中,lA A+BCE+DEF+ABCDF 只允許2k-p-1個作用(及其Aliases)被估算出來。 &Seven Advanced Statistics_DOE2
22
在2k-p中使用區隔化(Blocking)
26-2 Design (I = ABCE = BCDF) 中,用ABD作區隔化: &Seven Advanced Statistics_DOE2
23
Advanced Statistics_DOE2
&Seven Advanced Statistics_DOE2
24
Advanced Statistics_DOE2
&Seven Advanced Statistics_DOE2
25
Advanced Statistics_DOE2
&Seven Advanced Statistics_DOE2
26
Advanced Statistics_DOE2
&Seven Advanced Statistics_DOE2
27
Advanced Statistics_DOE2
Why/When to Use RSM? 已知此反應變數(Response Variable)受數個因子之影響. 必須經由實驗設計所證實. 吾人想知道此反應變數之最佳值 目標值 最大值 最小值 目的: 如何設定因子之水準(區間), 使反應變數 達到最佳值. &Seven Advanced Statistics_DOE2
28
Advanced Statistics_DOE2
RSM之基本原理 真正的函數關係 Y = f(x1, x2) + e 反應曲面(Response Surface) = f(x1, x2) 若因子之區間縮小, 則 f(x1, x2) 可用多項式來趨近. 如: Y = b0+b1x1+b2x2+…+bkxk+e (first order) Y = b0+bixi+biix2i+ bijxixj+e (second order) &Seven Advanced Statistics_DOE2
29
Advanced Statistics_DOE2
反應曲面 - Example &Seven Advanced Statistics_DOE2
30
The Method of Steepest Ascent
目的: 為能快速達到最佳反應變數值之鄰近區域. 假設: 在遠離最佳反應變數值的地方, 一般而言, 使用 First-order Model 已經足夠. Steepest Ascent 是一種沿著最陡峭的路徑(亦即反應變數增加最快之方向), 循序往上爬升的方法. 若用以求極小值, 則稱為 Steepest Descent. &Seven Advanced Statistics_DOE2
31
Advanced Statistics_DOE2
Steepest Ascent - 圖解 &Seven Advanced Statistics_DOE2
32
Steepest Ascent - Example
“525.DX5” 因子: 1: 反應時間 (35 min.) 2: 反應溫度 (155 oF) 反應變數 Y: 平均產出水準 (40%) Coded Variable (X1;X2) = (-1 ~ 1; -1 ~ 1) Natural Variable ( 1; 2) = (30 ~ 40; 150 ~ 160) &Seven Advanced Statistics_DOE2
33
Advanced Statistics_DOE2
Example 525 之實驗數據 重複中心點 Error 之估算 First-order Model 是否合適 ( Fit? ) &Seven Advanced Statistics_DOE2
34
Advanced Statistics_DOE2
Example 之 ANOVA Table &Seven Advanced Statistics_DOE2
35
Advanced Statistics_DOE2
Example之分析結果 實驗所得之回歸模式(Regression Model)為 y = x x2 x1與x2之係數(0.775 and 0.325)相對於係數之standard error = sqrt(MSE/d.f.e) = 0.10大的多; 故兩係數均顯著. 下次實驗之移動方向: 以移動係數最大之因子一個單位 (以Coded Variable 為基礎), 故選擇 x1 = 1, 則x2 = (0.325/0.775) x1 = 0.42 &Seven Advanced Statistics_DOE2
36
Advanced Statistics_DOE2
Example 之後續實驗結果(一) &Seven Advanced Statistics_DOE2
37
Advanced Statistics_DOE2
Example 之後續實驗結果(二) &Seven Advanced Statistics_DOE2
38
Example 之後續實驗結果(三) -ANOVA
實驗所得之回歸模式(Regression Model)為 y = x x2 需進一步之實驗以求取最佳點. &Seven Advanced Statistics_DOE2
39
Advanced Statistics_DOE2
Steepest Ascent 步驟 2k + nc center point 或 CCD 或 其他 First-order Model 顯著, 且Curvature不顯著; 否則已在最佳點附近. 取係數之絕對值最大者; 選定其Step Size xi. 其他因子之Step Size => xi / bi = xk / bk 將xi換算成Natural Variable; 回到第一步驟. &Seven Advanced Statistics_DOE2
40
Second-order Model 之分析
當非常接近最佳點時, First-order Model便不再適用; 此時應用 Second-order Model 或更高階之Model來趨近真實反應曲面的曲線(曲面)情形. &Seven Advanced Statistics_DOE2
41
Central Composite Design (CCD) - Example
“534.DX5” &Seven Advanced Statistics_DOE2
42
Advanced Statistics_DOE2
CCD 結構圖 &Seven Advanced Statistics_DOE2
43
Advanced Statistics_DOE2
CCD Example 之 ANOVA &Seven Advanced Statistics_DOE2
44
Advanced Statistics_DOE2
CCD Example 之反應曲面 &Seven Advanced Statistics_DOE2
45
CCD Example 之反應曲面_Contour Plot
&Seven Advanced Statistics_DOE2
Similar presentations