Download presentation
Presentation is loading. Please wait.
Published byPatrick Montgomery Modified 5年之前
1
Short Version : 13. Oscillatory Motion 短版: 13. 振盪性運動 (振動)
Wilberforce Pendulum
2
Disturbing a system from equilibrium results in oscillatory motion.
在平衡狀態中的系统受到干擾後就會進行振盪運動。 穩定平衡 振盪 Absent friction, oscillation continues forever. 若無摩擦,會一直振盪下去。 Oscillation
3
13.1. Describing Oscillatory Motion 描述振盪性運動
Characteristics of oscillatory motion 振盪性運動的特徵: Amplitude A = max displacement from equilibrium. 振幅 A = 離平衡點的最大位移。 Period T = time for the motion to repeat itself. 週期 T = 運動重複自已所需時間。 Frequency f = # of oscillations per unit time. 頻率 f = 每單位時間的振盪次數 same period T 同樣的週期 T same amplitude A 同樣的振幅 A [ f ] = hertz (Hz) = 1 cycle / s 赫茲 (赫) 周 / 秒 A, T, f do not specify an oscillation completely. 不能完全指定一個振盪。 Oscillation
4
13.2. Simple Harmonic Motion 簡單和諧運動
Simple Harmonic Motion (SHM) : 簡單和諧運動 (簡諧運動) : 2nd order diff. eq 2 integration const. 二次微分方程 2個積分常數 Ansatz: 擬設: angular frequency 角頻
5
A, B determined by initial conditions
由初始條件確定 ( t ) 2 x 2A
6
Amplitude & Phase 振幅和相位
C = amplitude 振幅 = phase 相位 Note: is independent of amplitude only for SHM. 注:簡諧運動的 與振幅無關 Curve moves to the right for < 0. < 0 時,曲線往右移。 Oscillation
7
Velocity & Acceleration in SHM 簡諧運動的速度和加速度
位移 |x| = max at v = 0 速度 |v| = max at a = 0 加速度
8
Application: Swaying skyscraper 搖擺的摩天樓
Tuned mass damper 調諧質塊阻尼器 : Damper highly damped , 阻尼器的阻尼值大 Overall oscillation overdamped. 整體擺動為過阻尼型 Taipei 101 TMD : 台北 101 的調諧質塊阻尼器: 41 steel plates, 41 塊鋼板, 660 tonne, d = 550 cm, 660 公噸, d = 550 cm , 87th-92nd floor. 在 層樓間 Movie Tuned Mass Damper Also used in: 也用於: Tall smokestacks 高的煙囪 Airport control towers. 機場控制塔 Power-plant cooling towers. 發電廠冷卻塔 Bridges. 橋樑 Ski lifts. 滑雪上山吊椅
9
Example 13.2. Tuned Mass Damper 調諧質塊阻尼器
The tuned mass damper in NY’s Citicorp Tower consists of a 373-Mg (vs 101’s 3500 Mg) concrete block that completes one cycle of oscillation in 6.80 s. 紐約花旗銀行大樓的調諧質塊阻尼器是一塊 373-Mg (101 的是 3500 Mg) 的水泥塊,它振盪一週要 6.80 s 。 The oscillation amplitude in a high wind is 110 cm. 在一次強風中它的振幅是110 cm。 Determine the spring constant & the maximum speed & acceleration of the block. 找出彈簧系數,與水泥塊的最高速率和加速度。
10
The Vertical Mass-Spring System 垂直式質塊彈簧系统
Spring stretched by x1 when loaded. 負載後彈簧伸長 x1。 mass m oscillates about the new equil. pos. 質塊在新平衡點處振盪 with freq 其頻率為
11
The Torsional Oscillator 扭力振盪器
= torsional constant 扭力常數 Used in timepieces 用於鐘錶
12
The Pendulum 單擺 Small angles oscillation: 小角度振盪:
支點 Small angles oscillation: 小角度振盪: Simple pendulum (point mass m): 單擺 (質點 m) :
13
Conceptual Example 13.1. Nonlinear Pendulum 非線性鐘擺
A pendulum becomes nonlinear if its amplitude becomes too large. 鐘擺在振幅太大時會變成非線性。 As the amplitude increases, how will its period changes? 振幅增加時,它的週期有何變化? If you start the pendulum by striking it when it’s hanging vertically, 如果鐘擺的起動是當它在正下方時打它, will it undergo oscillatory motion no matter how hard it’s hit? 是否不管打多重它都會在擺動? If it’s hit hard enough, motion becomes rotational. 打得夠重,運動會變成轉動。 (a) sin increases slower than sin 增加比 慢 smaller 較小 longer period 週期較長
14
The Physical Pendulum 物理擺 (複擺)
Physical Pendulum = any object that’s free to swing 物理擺 = 任何能自由擺動的物體 支點 Small angular displacement SHM 小角度位移 簡諧運動 重心
15
13.4. Circular & Harmonic Motion 圓周與諧和運動
Circular motion 圓周運動 : 2 SHO with same A & but = 90 兩互相垂直的簡諧振盪器, A & 相同但 = 90 x = R x = R x = 0 Lissajous Curves
16
GOT IT 懂嗎? 13.3. The figure shows paths traced out by two pendulums swinging with different frequencies in the x- & y- directions. 圖示兩個 x- 和 y- 頻率不相等的單擺在擺動時劃出的軌跡。 What are the ratios x : y ? x : y 的比值是甚麽? 1 : 2 3: 2 Lissajous Curves
17
13.5. Energy in Simple Harmonic Motion 簡諧運動的能量
能量 時間 位置 SHM: 簡諧運動 = constant Energy in SHM 平衡點
18
Potential Energy Curves & SHM 位能曲線和簡諧運動
“最恰”拋物線 Linear force: 線性力: parabolic potential energy: 拋物線位能 位能 位移 Taylor expansion near local minimum : 在局部低點附近的泰勒展式: Small disturbances near equilibrium points SHM 平衡點附近的小干擾 簡諧運動
19
13.6. Damped Harmonic Motion 阻尼諧動
sinusoidal oscillation 正弦振盪 Damping (frictional) force: 阻(摩擦)力: Damped mass-spring: 阻尼質塊彈簧: Amplitude exponential decay 振幅指數式遞減 Ansatz 擬設 : Real part 實數部份 : where
20
At t = 2m / b, amplitude drops to 1/e of max value.
t = 2m / b 時,振幅掉到最大值的 1/e。 is real, motion is oscillatory ( underdamped ) 是實數,運動為振盪式(欠阻尼) (a) For (c) For is imaginary, motion is exponential ( overdamped ) 是虛數,運動呈指數式衰減(過阻尼) (b) For = 0, motion is exponential ( critically damped ) = 0,運動呈指數式衰減(臨介阻尼) Damped & Driven Harmonic Motion
21
13.7. Driven Oscillations & Resonance 受驅振盪和共振
External force Driven oscillator 外力 受驅振盪器 Let d = driving frequency 驅動頻率 ( long time ) ( 長期 ) Prob 75: 習題 振幅 = natural frequency 自然頻率 Resonance: 共振: Damped & Driven Harmonic Motion 驅動頻率
22
Buildings, bridges, etc have natural freq. 建物,橋樑,等都有自然頻率。
If Earth quake, wind, etc sets up resonance, disasters result. 如果地震,風,等形成共振,結果就是災難。 Collapse of Tacoma bridge is due to self-excitation described by the van der Pol equation. 塔科馬橋的倒塌源於自我激發,可以范德蒲方程描述。 Tacoma Bridge Resonance in microscopic system 微系统的共振 : electrons in magnetron microwave oven 磁控管內電子 微波爐 Tokamak (toroidal magnetic field) fusion 托卡馬克 ( 環形磁場 ) 核融 CO2 vibration: resonance at IR freq Green house effect 二氧化碳振盪:共振於紅外線頻率 温室効應 Nuclear magnetic resonance (NMR) NMI for medical use. 核子磁性共振 (核磁共振) 醫療用核磁造像
Similar presentations