Download presentation
Presentation is loading. Please wait.
Published byFelicia Simon Modified 5年之前
1
2-4 Exact Equations 2-4-1 方法的條件 任何 first order DE 皆可改寫成 的型態 (1) 當 成立時,
(2) 當 is independent of x 或 is independent of y 可以用Modified Exact Equation Method 來解 (見講義 2-4-5)
2
2-4-2 方法的來源 Review the concept of partial differentiation
Specially, when f(x, y) = c where c is some constant,
3
補充: 思考:假設一個人在山坡的某處。若往東走,每走 1 公尺,高度會增加 a 公尺。若往北走,每走 1 公尺,高度會增加 b 公尺。假設這人現在所在的位置是(0, 0)。那麼這人的東北方,座標為 (p, q) 的地方,高度會比 (0, 0) 高多少? a p + b q (p, q) p q (p, 0) (0, 0) a b
4
[Definition 2.4.1] We can express any 1st order DE as
If there exists some function f(x, y) that satisfies and , then we call the 1st order DE the exact equation. The method for checking whether the DE is an exact equation: (Proof): If and , then
5
For the exact equation, 可改寫成
6
2-4-3 解法 The method for solving the exact equation (A): (2) (1) (2)
g(y) is a constant for x (2) (3) 代入 (3) (2) (4) further computation Solution
7
整理 Previous Step: Check whether is satisfied. Step 1: Solve
Step 2: 將 f(x, y) 代入 ,以解出 g(y) Step 3: Substitute g(y) into Step 4: Further computation and obtain the solution Extra Steps: (a) Consider the initial value problem
8
The method for solving the exact equation (B):
(2) (2) (1) (2) h(x) is a constant for y (3) 代入 (3) (2) (4) further computation Solution
9
2-4-4 例子 Example 1 (text page 65) Step 0: check whether it is exact
10
Example 2 (text page 65) Step 0: check for exact Step 1 Step 2 Step 3 Step 3 Step 2 Step 4
11
要注意 (a) 自行由另一個方向 來練習, 看是否得出同樣的結果。 (b) 得出的解 為 implicit solution (c) 思考:何時用 何時用
12
Example 3 (text page 66) 自修,但注意 initial value problem, 何時用 (c) 得出的 implicit solution 為 , 範圍:x (-1, 1) 而 explicit solution 為 , 範圍: x (-1, 1) 為何 不為解?
13
2-4-5 Modified Exact Equation Method
Technique: Use the integrating factor (x, y) to convert the 1st order DE into the exact equation. such that It is hard to find .
14
(1) When is a function of y alone:
We can set to be dependent on y alone. Therefore, 用 separable variable 的方法
15
(2) When is a function of x alone:
We can set to be dependent on x alone. Therefore, 用 separable variable 的方法
16
前面 2-4-3 (pages 105~107) 的解法流程再加一個步驟:
Step 0: Case 1 Yes (小心易背錯) Use the process of 2-4-3 Case 2 Whether Yes Whether Whether No is independent of x No is independent of y Case 3 In Cases 2 and 3, Yes Case 4 No Use other methods Using the process of 2-4-3, but M(x, y) should be modified as M(x, y) N(x, y) should be modified as N(x, y)
17
(independent of x) (Case 2)
Example 4 (text page 67) Step 0: (independent of x) (Case 2) Q: 為何 c 以及 可省略? double N Steps 1~4:
18
2-4-6 本節需要注意的地方 (1) 使本節方法時,要先將 DE 改成如下的型態 並且假設
本節需要注意的地方 (1) 使本節方法時,要先將 DE 改成如下的型態 並且假設 (2) 對 x 而言,g(y) 是個常數;對 y 而言,h(x) 是個常數 (3) 本節很少有 singular solution 的問題, 但是可能有 singular point 的問題 (4) 背熟三個判別式,二種情況的 integrating factor (小心勿背錯) 並熟悉解法的流程
19
2-5 Solutions by Substitutions
介紹 3 個特殊解法 Question: 尚有不少的 1st order DE 無法用 Sections 2-2~2-4 的方法來解 本節所提到的特殊解法的共通點: 用新的變數 u 來取代 y 對 症 下 藥
20
2-5-1 特殊解法 1: Homogeneous Equations
If g(tx, ty) = tαg(x, y), then g(x, y) is a homogeneous function of degree α. Which one is homogeneous? g(x, y) = x3 + y3 g(x, y) = x3 + y3 +1 注意:課本中,homogeneous 有兩種定義 一種是 Section 2-3 的定義 (較常用) 一種是這裡的定義 兩者並不相同
21
If M(x, y) and N(x, y) are homogeneous functions of the same degree,
For a 1st order DE: If M(x, y) and N(x, y) are homogeneous functions of the same degree, then the 1st order DE is homogeneous. It can by solved by setting y = xu, dy = udx + xdu, and use the separable value method. 解法的限制條件 (from page 102)
22
If is homogeneous then where u = y/x, y = xu 以 t = 1/x 得出 (separable)
23
Procedure for solving the homogeneous 1st order DE
Previous Step: Conclude whether the DE is homogeneous (快速判斷法:看 powers (指數) 之和) Step 1: Set y = ux, dy = udx + xdu 並化簡 Step 2: Convert into the separable 1st order DE Step 3: Solve the separable 1st order DE (用 Sec. 2-2 的方法) Step 4: Substitute u = y/x (別忘了這個步驟)
24
Example 1 (text page 71) M(x, y) N(x, y) Previous Step: Conclude whether the DE is homogeneous M(tx, ty) = t2M(x, y) N(tx, ty) = t2N(x, y) homogeneous DE Step 1: Set y = ux, dy = udx + xdu 原式 Step 2: Convert into the separable 1st order DE
25
Step 3: Solve the separable 1st order DE
Step 4 代回 u = y/x
26
2-5-2 特殊解法 2: Bernoulli’s Equations
We can set u = y1–n , , and the method of solving the 1st order linear DE to solve the Bernoulli’s equation. so (Chain rule)
27
Procedure for solving the Bernoulli’s equation
Previous Step : Conclude whether the DE is a Bernoulli’s equation Step 1: Set , Step 2: Convert the Bernoulli’s equation into the 1st order linear DE Step 3: Solve the 1st order linear DE (use the method in Sec. 2-3) Step 4: Substitute u = y1–n (別忘了)
28
Example 2 (text page 77) Previous Step: 判斷 (Bernoulli, n = 2) Step 1: set u = y–1 (y = u–1) (Chain rule) Step 2: Convert into the 1st order linear DE (standard form) 原式 Step 3: Obtain the solution of the 1st order DE Step 4: 代回 u = y–1
29
2-5-3 特殊解法 3 If the 1st order DE has the form, (B 0)
特殊解法 3 If the 1st order DE has the form, we can set u = Ax + By + C to solve it. (B 0) (解法的限制條件) Since (這式子也許較好記)
30
Procedure for solving Previous Step: Conclude Step 1: Set Step 2: Converting (轉化成用其他方法可以解出來的 DE 未必一定是轉化成 separable variable DE) Step 3: Solving Step 4: Substitute (別忘了)
31
Example 3 (text page 77) , Previous Step: 判斷 Step 1: Set Step 2: Converting 原式 Step 3: Obtain the solution (別忘了在運算過程中,代回 u = Ax + By) 注意 的算法 Step 4: 代回 u = Ax + By +C
32
本節要注意的地方 (1) 對症下藥,先判斷 DE 符合什麼樣的條件,再決定要什麼方法來解 (部分的 DE 可以用兩個以上的方法來解) (2) 別忘了,寫出解答時,要將 u 用 y/x, y1-n, 或 Ax + By + C 代回來 (3) 本節方法皆有五大步驟 Previous Step: 判斷用什麼方法 Step 1: Set u = …, du/dx = … Step 2: Converting, Step 3: Solving, Step 4: 將 u 用 x, y 代回來
33
整理:Methods of solving the 1st order DE
Direct computation (2) Separable variable (3) Linear DE (4) Exact equation 破解法: 直接積分 條件: 破解法: x, y 各歸一邊後積分 條件: 破解法:算 條件: 破解法:double N method 先處理 再處理 條件: (或反過來)
34
(4-1) Exact equation 變型 (4-2) Exact equation 變型 (5) Homogeneous equation 破解法: 條件: is exact independent of x 破解法: 條件: is exact independent of y 破解法:u = y/x, (y = xu) 再用 separable variable method 條件:
35
(6) Bernoulli’s Equation
(7) Ax + By + C 破解法: u = y1–n 再用 linear DE 的方法 條件: 破解法: u = Ax + By + c 條件: 注意 (a) 速度的訓練 (b) Exercises in Review 2多練習 (c) 行有餘力,觀察 singular solution 和 singular point
36
練習題 Sec. 2-4: 3, 8, 13, 17, 25, 29, 32, 34, 35, 38, 42 Sec. 2-5: 3, 5, 10, 13, 14, 17, 20, 22, 24, 25, 29, 31 Chap. 2 Review: 2, 13 , 16, 17, 18, 19, 22, 23, 24, 26, 27
Similar presentations