Download presentation
Presentation is loading. Please wait.
Published byΜάρκος Ζαχαρίου Modified 5年之前
1
柱坐标 Bessel函数 b.c. basis J0(ωa)=0 J0(ωnr) J1(ωnr) J0'(ωa)=0 J1(ωa)=0
N0(ωnr) N1(ωnr) N2(ωnr) spring UST©-math-phy weihuang §3Bessel 贝塞尔
2
n J0零点x0In |J1(x0n)| J0'或J1零点 1 2.4048 0.5191 3.8317 2 5.5201 0.3403
1 2.4048 0.5191 3.8317 2 5.5201 0.3403 7.0156 3 8.6537 0.2715 4 0.2325 5 0.2065 6 0.1877 7 0.1733 8 0.1617 9 0.1522 10 BesselJZero[0,10] //N = BesselJ[1, BesselJZero[0,10] ] //N//Abs =0.1442 N[ BesselJZero[1,10] ]= 32) ←(*Mathematica*) (或Maple符号计算 Matlab工程/数值) UST©-math-phy weihuang
3
打靶: 按问题给的b.c. 找Jν→0的那些x=ωa 找得 可数(无穷多个离散的可排序的) 非负 实 本征值 J0(ωa)=0, boundary a=1 J0'(ωa)=0 ↔ J1(ωa)=0
spring UST©-math-phy weihuang
4
一种完备正交函数系{J0(ω0Inr)} 另一种完备正交函数系{J0(ω0IInr)} n>0 对应 I齐b. c
一种完备正交函数系{J0(ω0Inr)} 另一种完备正交函数系{J0(ω0IInr)} n>0 对应 I齐b.c n≥0 对应 II齐b.c. 类比三角函数系{cosωnr} spring UST©-math-phy weihuang
5
完备正交函数系{Jν(ων I/II/III nr)} {J0(ω0Inr)} {J0(ω0IInr)} I b.c. II b.c
spring UST©-math-phy weihuang
6
又一种完备正交函数系{J1(ω0Inr)} I齐b.c., n>0, 柱径取为1 类比三角函数系{sinωnr}
spring UST©-math-phy weihuang
7
{J1(ω1Inr)} {J1(ω1IInr)} I b.c. II b.c
spring UST©-math-phy weihuang
8
spring UST©-math-phy weihuang
9
spring UST©-math-phy weihuang
10
*(k2-μ<0情况)虚宗量Bessel方程的通解
spring UST©-math-phy weihuang
11
*A教材 例3.4.7 spring UST©-math-phy weihuang
12
*(球问题)球Bessel方程的通解 和固有值问题的解
spring UST©-math-phy weihuang
Similar presentations