Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lec12 Microwave Network Analysis (IV)

Similar presentations


Presentation on theme: "Lec12 Microwave Network Analysis (IV)"— Presentation transcript:

1 Lec12 Microwave Network Analysis (IV)

2 4.4 THE TRANSMISSION (ABCD) MATRIX
Many microwave networks consist of a cascade connection of two or more two-port networks. In this case it is convenient to define a 2 × 2 transmission, or ABCD, matrix, for each two-port network. The ABCD matrix of the cascade connection of two or more two-port networks can be easily found by multiplying the ABCD matrices of the individual two-ports. The ABCD matrix is defined for a two-port network in terms of the total voltages and currents Fig. a two-port network or 由方程推导ABCD参数的定义。

3 In the cascade connection of two two-port networks
then The ABCD matrix of the cascade connection of the two networks is equal to the product of the ABCD matrices representing the individual two-ports.

4 ABCD Parameters of Some Useful Two-Port Circuits
求解过程。

5

6 Relation to Impedance Matrix
The impedance parameters of a network can be easily converted to ABCD parameters. Note: the direction of I2 in ABCD matrix is different from that in Z matrix. If the network is reciprocal, then Z12 = Z21 and AD-BC=1. If the network is symmetric , then Z11 = Z22 and A=D. If the network is lossless, A and D are real, and B and C are imaginary.

7 Equivalent Circuits for Two-Port Networks
conversions between two-port network parameters

8

9 Equivalent circuits for a reciprocal two-port network.
An arbitrary two-port network can be described in terms of impedance parameters as or in terms of admittance parameters as If the network is reciprocal, then Z12 = Z21 and Y12 = Y21. These representations lead naturally to the T and π equivalent circuits

10 Equivalent circuits for a reciprocal two-port network. (a) T equivalent. (b) π equivalent.
If the network is reciprocal, there are six degrees of freedom (the real and imaginary parts of three matrix elements), so the equivalent circuit should have six independent parameters. A nonreciprocal network cannot be represented by a passive equivalent circuit using reciprocal elements. If the network is lossless, the impedance or admittance matrix elements are purely imaginary. This reduces the degrees of freedom for such a network to three, and the T and π equivalent circuits can be constructed from purely reactive elements.

11 A coax-to-microstrip transition and equivalent circuit representations
A coax-to-microstrip transition and equivalent circuit representations. (a) Geometry of the transition. (b) Representation of the transition by a “black box.” (c) A possible equivalent circuit for the transition Because of the physical discontinuity in the transition from a coaxial line to a microstrip line, electric and/or magnetic energy can be stored in the vicinity of the junction, leading to reactive effects. Characterization of such effects can be obtained by measurement or by numerical analysis

12 如何选择网络的矩阵表示 [Z]=[Z1]+[Z2]+….+[ZN]
问题:N端口网络可以用阻抗矩阵[Z], 导纳矩阵[Y], 散射矩阵[S]表示 二端口网络还可以用转移矩阵[ABCD]表示。如何选择? 1. 对于多个网络的串联,采用阻抗矩阵比较方便。 两个双口网络串联,每个口的电流不变,电压分压。故 所以 一般地,N端口串联网络有 两个串联双口网络 [Z]=[Z1]+[Z2]+….+[ZN]

13 [Y]=[Y1]+[Y2]+….+[YN] 2. 对于多端口网络的并联,采用导纳矩阵比较方便。
两个双口网络并联,每个口的电压不变,电流分流。故 两个并联双口网络 因此 一般地,N端口并联网络有 [Y]=[Y1]+[Y2]+….+[YN]

14 2. 对于二端口级联网络,采用ABCD矩阵。 网络的级联即对应的ABCD矩阵顺序相乘。 3. 对于微波网络,很难定义电压和电流,开路和短路,适合用散射矩阵。 微波测量,可以测量入射波和反射波的大小和相位,从而得到散射参数

15 归一化的电压、电流和阻抗 输入阻抗 对波导等色散传输线,由于不能单值定义特性阻抗。因此,虽然反射系数可以由测量唯一确定,但Z以及V、I的值仍不能单值地确定,即使选择波阻抗或等效阻抗来代替特性阻抗,但仍带来相当大的人为性(随意性)。 为克服该困难,采用圆图中的方法,即阻抗归一化:定义归一化阻抗为 对应于归一化阻抗下的等效电压、等效电流称为归一化等效电压和等效电流

16 满足 此外,归一化等效电压、等效电流和未归一化等效电压、等效电流满足 1)功率相等条件 2)阻抗条件 得归一化电压电流表达式

17 归一化参量不论对非色散传输线还是色散传输线都严格成立,使微波传输线可应用双线传输线理论及圆图进行计算。
注意,归一化电压电流已不再具有电路中原来电压、电流的意义,不具有电压和电流的量钢,而且它们的量纲相同( )。 入射电压转化为归一化入射波: 反射电压转化为归一化反射波: 归一化电压、电流满足: 归一化的特性阻抗

18 归一化电压电流为 从而,入射功率和反射功率分别为 总功率:

19 归一化的矩阵参数 N端口网络中,端口常接传输线,其各端口传输线的特性阻抗可能会不同,常常需要归一化去掉端口特性阻抗对网络矩阵的影响,即矩阵参数的归一化。 1. 散射矩阵 [S] 如果各个端口的特性阻抗相同,是否对端口电压归一化不影响散射参数的值。 事实上,很多书籍定义散射参数为归一化反射波与归一化入射波的关系。

20 2.阻抗矩阵 由于 则有 其中 归一化阻抗矩阵与未归一化阻抗矩阵间的关系为 其矩阵参数

21 3.导纳矩阵 由于 则有 其中 归一化阻抗矩阵与未归一化阻抗矩阵间的关系为 其矩阵参数

22 4.转移矩阵 ABCD矩阵定义的电压电流关系 其中 归一化abcd矩阵定义的归一化电压电流关系 其中

23 归一化参量间的转化

24

25 Homework

26


Download ppt "Lec12 Microwave Network Analysis (IV)"

Similar presentations


Ads by Google