Download presentation
Presentation is loading. Please wait.
1
Price Duopoly and Capacity Constraints
Presenter: Yen-Lu
2
Basic Model 市場存在二家廠商: firm1 & firm2 生產同質產品 線性市場需求函數 生產成本為零
假設二廠商具有相同的產能水準 二廠商於市場上進行價格競爭 Rationing rule: Efficient rule
3
市場需求函數:q=a-p 二廠商的產能水準分別為k1及k2,並假設k1=k2=k且k a
4
Historical analyses of duopoly - Cournot
假定每一廠商的產能水準為 k a/3 市場需求函數 q = q1+q2 Firm1之利潤
5
Fig1: point J (monopolist)
Cournot 均衡解 Fig1: point C (Cournot) Monopolist 均衡解 Fig1: point J (monopolist)
6
Historical analyses of duopoly - Bertrand
假設每一廠商在任何價格下皆有足夠的產能可以服務全部的市場 二廠商進行削價競爭直至p=0 Bertrand 均衡解 Fig1: point E
8
Historical analyses of duopoly - Edgeworth
考慮廠商可能存在產能限制之問題 假定 k = 3a/4 假定firm i價格pi=0,則其最多僅能銷售至產能水準k為止 Firm j所面對之剩餘需求線為DD’ Firm j將價格提高至M並獲得獨占利潤 Fig2 Edgeworth認為產品價格可能存在一波動區間,此區間範圍決定於產能水準k
9
價格波動區間之上限與下限 令波動區間之價格下限為 價格上限為 假定firm j將價格定於 Firm i可選擇將價格訂於 或
之條件
10
波動區間之價格上限 波動區間之價格下限
11
若不存在超額產能或產能不足之問題,且 k1=k2=a/2 ,此時價格波動區間與利潤為 當 k1=k2=a/3,可得 若低價廠商的產能水準為a/3,另一廠商所面對之剩餘需求為2a/3,其會生產a/3的產量,價格為a/3
13
Fig3之說明 OPM:若廠商的產能水準為k=a,低價廠商提高價格之收益成長曲線 OM:當p<a/2時,k=a/2的產能水準無法滿足市場,則低價廠商提高價格之收益成長曲線 OMMS:高價廠商提高其價格之收益成長曲線 利潤於MM點達到最大,隨著價格的提高,利潤慢慢遞減,直至 p=a/2時遞減為零
14
考慮低價廠商將價格訂於a/8,若高價廠商將價格訂得稍微高一些,則
低價廠商之利潤為B點 高價廠商之利潤為D點 假定高價廠商有機會改變其價格 若其與低價廠商進行削價競爭,則其利潤 會趨近於B點 若其提高價格至p = a/4,則其利潤為MM點,此時之利潤與B點相同 Edgeworth之價格波動區間為B至MM
16
Fig4之說明 當廠商受到產能限制時,其不再有足夠的產能以服務獨占價格下的需求量 低價廠商提高價格之收益成長曲線為OC通過MM Edgeworth價格波動區間決定於MM與OC之水平距離,於Fig4中此距離為零 當k=a/3時,其價格及產量與Cournot非合作均衡解相同
17
當0 k a/3,二廠商皆會生產至其產能水準且產品價格為
當二廠商的總合產能水準小於a時,競爭均衡(competitive equilibrium)不再是p=0,而是 p=a-2k
18
Mixed Strategy solution to the price game
考慮a/3< k <a 假設均衡策略為pl及ph且發生之機率為正 Firm i之銷售量 Firm i預期銷售量為
19
Firm i預期利潤為 假定 ph< a-k
20
可得mixed strategy 下的Edgeworth 價格波動之上限與下限ph與 pl
ph =(a-k)/2 可得mixed strategy 下的Edgeworth 價格波動之上限與下限ph與 pl 將 代入 可得累積機率密度函數
22
當x :Bertrand 訂價 p=t 當x :undercutting p=t|1-x2-x1|
23
Capacity Constraints May restore the Hotelling Equilibrium
Lemma1 capacity constraints may rule out undercutting strategies ♠ When firms face limited capacities, the incentive to undercut is reduced ♠ When undercutting, a firm will be able to serve the market only up to its capacity
24
The level of profits at the Hotelling equilibrium is equal to t/2
When a>1/4 and firms do not face capacity constraints, the best reply against pj=t consists for firm i in undercutting the other’s price with pi=2at When firm i holds a limited capacity, the demand is given by the level of capacity ki
25
2atki ≤ t/2 : to identify the critical level of capacity below which undercutting strategies are not profitable Lemma1 states that capacity levels should be low enough in order to prevent undercutting strategies
26
當x :Edgeworth price
27
Concluding Remarks 在efficient rationing rule下,當產能水準縮小時,可出現Cournot均衡解
Similar presentations