Presentation is loading. Please wait.

Presentation is loading. Please wait.

Anchor-free Detection专题

Similar presentations


Presentation on theme: "Anchor-free Detection专题"— Presentation transcript:

1 Anchor-free Detection专题
Lejian Ren

2 为什么要有anchor 直接预测坐标难以训练 F(x) =(x1, y1, x2, y2)

3 早期的anchor-free: DenseBox
FCN形式,输出5通道(score + 4个坐标变换) 对物体size差距较大的图像效果不好(FPN?) Huang, Lichao, et al. "Densebox: Unifying landmark localization with end to end object detection." arXiv preprint arXiv:  (2015).

4 Denet 预测每个像素是什么类型的corner DeNet
Tychsen-Smith, Lachlan, and Lars Petersson. "Denet: Scalable real-time object detection with directed sparse sampling." Proceedings of the IEEE International Conference on Computer Vision

5 CornerNet Law, Hei, and Jia Deng. "Cornernet: Detecting objects as paired keypoints." Proceedings of the European Conference on Computer Vision (ECCV)

6 CornerNet 为什么不用anchor 为什么用corner anchor多 超参多 Center比较难定位,需要考虑和四个边的关系
Law, Hei, and Jia Deng. "Cornernet: Detecting objects as paired keypoints." Proceedings of the European Conference on Computer Vision (ECCV)

7 CornerNet Heatmap参考了key point Embedded是一个d-1的数
Offset用来减小从feature map到原图的影响(共享) Law, Hei, and Jia Deng. "Cornernet: Detecting objects as paired keypoints." Proceedings of the European Conference on Computer Vision (ECCV)

8 CornerNet 预测corner 高斯 Focal loss
Law, Hei, and Jia Deng. "Cornernet: Detecting objects as paired keypoints." Proceedings of the European Conference on Computer Vision (ECCV)

9 CornerNet Corner pooling 为什么需要:物体的corner往往不在物体里面
Law, Hei, and Jia Deng. "Cornernet: Detecting objects as paired keypoints." Proceedings of the European Conference on Computer Vision (ECCV)

10 CornerNet Grouping Corner
Law, Hei, and Jia Deng. "Cornernet: Detecting objects as paired keypoints." Proceedings of the European Conference on Computer Vision (ECCV)

11 CornerNet Law, Hei, and Jia Deng. "Cornernet: Detecting objects as paired keypoints." Proceedings of the European Conference on Computer Vision (ECCV)

12 CornerNet Law, Hei, and Jia Deng. "Cornernet: Detecting objects as paired keypoints." Proceedings of the European Conference on Computer Vision (ECCV)

13

14

15 CornerNet-Lite 加速 CornerNet-Saccade CornerNet-Squeeze 减小输入尺寸
利用attention减少需要预测的点 CornerNet-Squeeze 修改backbone Law, Hei, et al. "CornerNet-Lite: Efficient Keypoint Based Object Detection." arXiv preprint arXiv:  (2019).

16 CornerNet-Lite CornerNet-Saccade
Law, Hei, et al. "CornerNet-Lite: Efficient Keypoint Based Object Detection." arXiv preprint arXiv:  (2019).

17 CornerNet-Lite Law, Hei, et al. "CornerNet-Lite: Efficient Keypoint Based Object Detection." arXiv preprint arXiv:  (2019).

18 CenterNet-1 预测key point 预测长宽
X. Zhou, D. Wang, and P. Krähenbühl, “Objects as Points,” 2019.

19 CenterNet-1 Loss functions
X. Zhou, D. Wang, and P. Krähenbühl, “Objects as Points,” 2019.

20 CenterNet-1 X. Zhou, D. Wang, and P. Krähenbühl, “Objects as Points,” 2019.

21 CenterNet-2 CenterNet的缺点 从预测corner变成预测corner+center
原文认为:只预测corner无法很好的catch物体本身的信息 我认为:embedding没有区分度 从预测corner变成预测corner+center 只有预测的center在预测的corner内部,才是正确的预测 Duan, Kaiwen, et al. "CenterNet: Keypoint Triplets for Object Detection." arXiv preprint arXiv:  (2019).

22 CenterNet-2 Duan, Kaiwen, et al. "CenterNet: Keypoint Triplets for Object Detection." arXiv preprint arXiv:  (2019).

23 CenterNet-2 如何判断center在corner内部(判定区域的设定) 太大,precision低 太小,recall低 自适应
Duan, Kaiwen, et al. "CenterNet: Keypoint Triplets for Object Detection." arXiv preprint arXiv:  (2019).

24 CenterNet-2 Center pooling Cascade corner pooling
Duan, Kaiwen, et al. "CenterNet: Keypoint Triplets for Object Detection." arXiv preprint arXiv:  (2019).

25 CenterNet-2 Duan, Kaiwen, et al. "CenterNet: Keypoint Triplets for Object Detection." arXiv preprint arXiv:  (2019).

26 RepPoints(representative points)
motivation: 物体空间形状的可以通过几个reppoints来表示,通过学多个reppoints, 就可以用其外接矩形来表示物体的框 Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “RepPoints: Point Set Representation for Object Detection,” 2019.

27 RepPoints 和deformable convolution 完美结合
Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “RepPoints: Point Set Representation for Object Detection,” 2019.

28 RepPoints Pipeline: Learning RepPoints RepPoints refinement
Converting RepPoints to bounding box Min-max function Partial min-max function Moment-based function (reppoints均值和二阶矩) Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “RepPoints: Point Set Representation for Object Detection,” 2019.

29 RepPoints Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “RepPoints: Point Set Representation for Object Detection,” 2019.

30 RepPoints Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “RepPoints: Point Set Representation for Object Detection,” 2019.

31 一点看法 为什么object detection没有一开始就anchor-free?
目前的anchor-free就是“anchor-free”吗? Anchor-free可能的发展方向


Download ppt "Anchor-free Detection专题"

Similar presentations


Ads by Google