Presentation is loading. Please wait.

Presentation is loading. Please wait.

Significant Figures 有效數字

Similar presentations


Presentation on theme: "Significant Figures 有效數字"— Presentation transcript:

1 Significant Figures 有效數字
Significant figures (digits) 有效數字 of an integer 整數的: all digits between the leftmost & rightmost non-zero digits. 最左和最右非零數字之間的數字都是 Trailing zeros are ambiguous 隨尾的零則不定 of a real number 實數的 : all digits except leading zeros. 帶頭的零之外,全部都是 Examples 例 : Numbers with 5 sig. dig 有 5 個有效數字的數目 : , , , Note: may be taken as having 10 sig. dig. 也可當做有 10個有效數字 Caution 小心 : An integer sometimes denotes infinite accuracy (  sig. dig. ). 一個整數有時代表無精確度 (  個有效數字) e.g., 2 in the formulae C = 2  R & A =  R2. 如 在這些公式中的 2

2 Accuracy & Significant Figures 精確度和有效數字
means 2.94 is between 1.6 & 1.8. 表示 2.94 在 1.6 和 1.8 之間 i.e. or Accuracy worsens after each calculation. 精確度在每個計算之後都會變差。 Result has accuracy of the least accurate member. 結果的精確度由精確度最低的部份决定。 /  : Number of significant digits = that of the least accurate member. 有效數字的個數 = 精確度最低部份的有效數字個數 + /  : result is rounded off to the rightmost common digit. 結果應保留到共同數字的最右邊。

3 Bridge 橋 = 1.248 km ( accuracy = 0.001 km )
Ramp 引道 = m = km ( acc = km ) Overall length 總長 = km km = km Overall acc 總精度 = km, error 誤差 =  km  Overall length 總長 = km  = ( # sig. dig. = 6 ) RE = 6.37 106 m ( # sig. dig. = 3 ) 2  RE = 106 m Overall # sig. digits = 3  2  RE = 40.0106 m

4 Example 1.3. Uranium fuel rod in nuclear reactor 核子反應爐內的鈾燃料棒
Before insertion 插入前 , rod length 棒長 = m After insertion 插入後 , rod length 棒長 = m Q 問 : What is the increase in length 長度增加多少 ? A: m  m = m = 8 mm Accuracy 精確度 = 1 mm Error 誤差 =  m =  1 mm  Increase in length is 長度增加 8 mm ( 1 sig. dig 個有效數字) Any intermediate results must have at least 1 extra sig. dig. to avoid rounding errors. 每個中介結果必需保留多一個有效數字才能避免四捨五入的誤差 Caclulator: apply round-off & truncation only at the end. 計算機 : 全部算完才四捨五入和捨棄非有效數字。


Download ppt "Significant Figures 有效數字"

Similar presentations


Ads by Google