Download presentation
Presentation is loading. Please wait.
1
rlj
2
Motivation Instance segmentation Proposal based Proposal free 慢
回归算法,每个pixel回归到center的距离
3
基于回归的方法 缺点: Inference的时候需要先得到中心点(聚类算法),再根据距离划 分instance
4
Framework
5
Learnable margin e: 像素 C:中心点 缺点: Margin fixed
6
Learnable margin Since for each instance k the gaussian outputs a foreground background probability map, this can be optimized by using a binary classification loss with the binary foreground background map of each instance as ground-truth. As opposed to using the standard cross-entropy loss function, we opt for using the Lovasz-hinge loss instead.
7
Seed map
8
Post processing Seed map取最大值,得到中心点 在同一个位置,取σ,每个像素预测到中心点距离
根据公式 ,>0.5则属于该中心点所属 instance 从seed map上把整个instance mask掉,取下一个最大值
9
Other details
10
Experiments
11
Experiments
Similar presentations