Chapter 2 Combinatorial Analysis 主講人 : 虞台文. Content Basic Procedure for Probability Calculation Counting – Ordered Samples with Replacement – Ordered.

Slides:



Advertisements
Similar presentations
外贸英文函电 Business Letters Chapter Three Enquiry. Chapter Two Inquiry  Revision Revision  Objectives Objectives  Warming-up Questions Warming-up Questions.
Advertisements

第七课:电脑和网络. 生词 上网 vs. 网上 我上网看天气预报。 今天早上看了网上的天气预报。 正式 zhèngshì (报告,会议,纪录) 他被这所学校正式录取 大桥已经落成,日内就可以正式通车 落伍 luòw ǔ 迟到 chídào 他怕迟到,六点就起床了.
Course 1 演算法: 效率、分析與量級 Algorithms: Efficiency, Analysis, and Order
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
科 技 說 明 文 講 師:楊宏通.
博愛醫院朱國京夫人紀念幼稚園 / 幼兒中心 Pok Oi Hospital Mrs
中职英语课程改革中 如何实践“以就业为导向,服务为宗旨”的办学理念
2012 年下学期 湖南长郡卫星远程学校 制作 13 Unit 4 The next step 年下学期 湖南长郡卫星远程学校 制作 13 Discussion Which university do you want to study at? Have you thought carefully.
雅思大作文的结构 Presented by: 总统秘书王富贵.
第三章 隨機變數.
第十三章 整合性行銷溝通:廣告、促銷、公共關係.
Chapter 5 Relational Algebra
Figure Interpreting. Introduction In recording an English figure, its three digits make one subsection, while in Chinese, its four digits make one subsection.
Tea Classification ——Oolong Tea
Minimum Spanning Trees
3-3 Modeling with Systems of DEs
Euler’s method of construction of the Exponential function
指導教授:許子衡 教授 報告學生:翁偉傑 Qiangyuan Yu , Geert Heijenk
Population proportion and sample proportion
模式识别 Pattern Recognition
Differential Equations (DE)
Hui-Ju Chuang University of Hawaii-Manoa
Chapter 4 歸納(Induction)與遞迴(Recursion)
樹狀結構 陳怡芬 2018/11/16 北一女中資訊專題研究.
EBSCO was founded by Elton B. Stephens in 1944
Unit title: 嗨!Hi! Introducing yourself in Chinese
Creating Animated Apps (I) 靜宜大學資管系 楊子青
Last Lecture Revisited
Sampling Theory and Some Important Sampling Distributions
啟示錄 人 子 七 教 會 寶 座 七 印 七 號 龍 與 獸 七 碗 巴 比 倫 千 禧 年 前 後 新 耶 路 撒 冷 第9章(第5號)
主讲人: 吕敏 { } Spring 2016,USTC 算法基础 主讲人: 吕敏 { } Spring 2016,USTC.
本章大綱 2.1 The Limit of a Function函數的極限 2.2 Limit Laws極限的性質
Interval Estimation區間估計
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
校園網路架構介紹與資源利用 主講人:趙志宏 圖書資訊館網路通訊組.
Lesson 44:Popular Sayings
Advanced Basic Key Terms Dependency Actor Generation association
句子成分的省略(1).
職業 Random Slide Show Menu
模式识别 Pattern Recognition
Ch 6 實習.
Chapter 5 Recursion.
Chp.4 The Discount Factor
普通物理 General Physics 21 - Coulomb's Law
Version Control System Based DSNs
每周三交作业,作业成绩占总成绩的15%; 平时不定期的进行小测验,占总成绩的 15%;
相關統計觀念復習 Review II.
Chp.4 The Discount Factor
Summary for Chapters 24 摘要: 24章
关联词 Writing.
Unit 7 Lesson 20 九中分校 刘秀芬.
计算机问题求解 – 论题 算法方法 2016年11月28日.
爬蟲類動物2 Random Slide Show Menu
The Bernoulli Distribution
Chp.4 The Discount Factor
Q & A.
中学英语教学中如何培养核心素养? ---基于学科关键问题的思考与实践
Introduction to Probability Theory ‧1‧
Chapter 7 Relations (關係)
计算机问题求解 – 论题 图的连通度 2018年11月13日.
何正斌 博士 國立屏東科技大學工業管理研究所 教授
2 Number Systems, Operations, and Codes
怎樣把同一評估 給與在不同班級的學生 How to administer the Same assessment to students from Different classes and groups.
多维阅读第4级 Food for Zebras.
Class imbalance in Classification
二项式的分解因式 Factoring binomials
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Significant Figures 有效數字
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

Chapter 2 Combinatorial Analysis 主講人 : 虞台文

Content Basic Procedure for Probability Calculation Counting – Ordered Samples with Replacement – Ordered Samples without Replacement  Permutations – Unordered Samples without Replacement  Combinations Binomial Coefficients Some Useful Mathematic Expansions Unordered Samples with Replacement Derangement Calculus

Chapter 2 Combinatorial Analysis Basic Procedure for Probability Calculation

1. Identify the sample space . 2. Assign probabilities to certain events in A, e.g., sample point event P(  ). 3. Identify the events of interest. 4. Compute the desired probabilities.

Chapter 2 Combinatorial Analysis Counting

Goal of Counting Counting the number of elements in a particular set, e.g., a sample space, an event, etc.

Cases Ordered Samples w/ Replacement Ordered Samples w/o Replacement – Permutations Unordered Samples w/o Replacement – Combinations Unordered Samples w/ Replacement

Chapter 2 Combinatorial Analysis Ordered Samples with Replacement

Ordered Samples eat ate tea elements in samples appearing in different orders are considered different.

Ordered Samples w/ Replacement meet teem mete 1. Elements in samples appearing in different orders are considered different. 2. In each sample, elements are allowed repeatedly selected.

Ordered Samples w/ Replacement Drawing k objects, their order is noted, among n distinct objects with replacement. The number of possible outcomes is n distinct objects  k  k

Example 1 How many possible 16-bit binary words we may have? 2 distinct objects  16

Example 2 Randomly Choosing k digits from decimal number, Find the probability that the number is a valid octal number. For any , P(  )=1/10 k.

Chapter 2 Combinatorial Analysis Ordered Samples without Replacement  Permutations

Permutations 清 心 也 可 以 可以清心也 以清心也可 清心也可以 心也可以清 也可以清心 可以清心也 以清心也可 清心也可以 心也可以清 也可以清心

Ordered Samples w/o Replacement  Permutations Drawing k objects, their order is noted, among n distinct objects without replacement. The number of possible outcomes is n distinct objects  k  k

Example 3 Five letters are to be selected without replacement from the alphabet (size 26) to form a word (possibly nonsense). Find the probabilities of the following events? 1. Begin with an s. 2. Contains no vowel. 3. Begins and ends with a consonant. 4. Contains only vowels. Five letters are to be selected without replacement from the alphabet (size 26) to form a word (possibly nonsense). Find the probabilities of the following events? 1. Begin with an s. 2. Contains no vowel. 3. Begins and ends with a consonant. 4. Contains only vowels.

Example 3 Five letters are to be selected without replacement from the alphabet (size 26) to form a word (possibly nonsense). Find the probabilities of the following events? 1. Begin with an s. 2. Contains no vowel. 3. Begins and ends with a consonant. 4. Contains only vowels. Five letters are to be selected without replacement from the alphabet (size 26) to form a word (possibly nonsense). Find the probabilities of the following events? 1. Begin with an s. 2. Contains no vowel. 3. Begins and ends with a consonant. 4. Contains only vowels. Define E 1 : word begins with an s. E 2 : word contains no vowel. E 3 : word begins and ends with a consonant. E 4 : word contains only vowels. P(E 1 ) =? P(E 2 ) =? P(E 3 ) =? P(E 4 ) =?

Example 3 Define E 1 : word begins with an s. E 2 : word contains no vowel. E 3 : word begins and ends with a consonant. E 4 : word contains only vowels. P(E 1 ) =? P(E 2 ) =? P(E 3 ) =? P(E 4 ) =? For any , P(  )=1/|  |.

Chapter 2 Combinatorial Analysis Unordered Samples without Replacement  Combinations

Combinations n distinct objects Choose k objects How many choices?

Combinations Drawing k objects, their order is unnoted, among n distinct objects w/o replacement, the number of possible outcomes is This notation is preferred

More on

Examples

Example 4 The mathematics department consists of 25 full professors, and 15 associate professors, and 35 assistant professors. A committee of 6 is selected at random from the faculty of the department. Find the probability that all the members of the committee are assistant professors. x Denoting the all-assistant event as E,

Example 5 A poker hand has five cards drawn from an ordinary deck of 52 cards. Find the probability that the poker hand has exactly 2 kings. x Denoting the 2-king event as E,

Example 6 Two boxes both have r balls numbered 1, 2, …, r. Two random samples of size m and n are drawn without replacement from the 1 st and 2 nd boxes, respectively. Find the probability that these two samples have exactly k balls with common numbers r r r r m n P(“k matches”) = ? E |  |=? |E|=?

Example r r r r m n # possible outcomes from the 1 st box. # possible k -matches. # possible outcomes from the 2nd box for each k -match.

Example r r r r m n

r r r r m n 樂透和本例有何關係 ?

Example r r r r m n 本式觀念上係由第一口箱子出發所推得

Example r r r r m n 觀念上,若改由第二口箱子出發結果將如何 ?

Example r r r r m n

Exercise r r r r m n

Chapter 2 Combinatorial Analysis Binomial Coefficients

n terms

Binomial Coefficients n boxes

Binomial Coefficients Facts:

Properties of Binomial Coefficients

Exercise

Properties of Binomial Coefficients 第一類取法 :   第二類取法 :

Properties of Binomial Coefficients Pascal Triangular

Properties of Binomial Coefficients Pascal Triangular

Properties of Binomial Coefficients 吸星大法

Example 7-1

Example 7-2 k  x+1 Fact: ?

Example 7-2 k  k+1 簡化版

Example 7-3 k  k+2 簡化版 ?

Negative Binomial Coefficients

How to memorize? k k k (n)(n) 11

Negative Binomial Coefficients 這公式真的對嗎 ? k k k (n+k1)(n+k1) 11 1

Negative Binomial Coefficients

Chapter 2 Combinatorial Analysis Some Useful Mathematic Expansions

z 值沒有任何限制

Some Useful Mathematic Expansions

Chapter 2 Combinatorial Analysis Unordered Samples with Replacement

Discussion 投返 非投返 有序 無序 ?

Unordered Samples with Replacement n 不同物件任取 k 個 可重複選取 n 不同物件,每一 中物件均無窮多個 從其中任取 k 個

Unordered Samples with Replacement 此多項式乘開後 z k 之係數有何意義 ?

Unordered Samples with Replacement

投返 非投返 有序 無序

Example 8 Suppose there are 3 boxes which can supply infinite red balls, green balls, and blue balls, respectively. How many possible outcomes if ten balls are chosen from them? n = 3 k = 10

Example 9 There are 3 boxes, the 1st box contains 5 red balls, the 2nd box contains 3 green balls, and the 3rd box contains infinite many blue balls. How many possible outcomes if k balls are chosen from them. k=1 有幾種取法 k=2 有幾種取法 k=3 有幾種取法 k=4 有幾種取法 觀察 :

Example 9 此多項式乘開後 z k 之係數卽為解

Example 9 此多項式乘開後 z k 之係數卽為解

Example 9 此多項式乘開後 z k 之係數卽為解 Coef(z k )=?

Example 9 Coef(z k )=? jk4jk4 jk6jk6 j  k  10 jkjk

Example 9 Coef(z k )=? jk4jk4 jk6jk6 j  k  10 jkjk

Example 9

Chapter 2 Combinatorial Analysis Derangement

最後 ! ! ! 每一個人都拿 到別人的帽子 錯排

Example 10 n 人中正好 k 人拿 對自己的帽子 n 人中無人拿 對自己的帽子

Example 10

 n 人中正好 k 人拿對自己的帽子  n 人中無人拿對自己的帽子 /2!2/3!

Example 10  n 人中正好 k 人拿對自己的帽子  n 人中無人拿對自己的帽子 令 A i 表第 i 個人拿了自己帽子

Example 10 A i 表第 i 個人拿了自己帽子

Example 10 A i 表第 i 個人拿了自己帽子 12n 1...

Example 10 A i 表第 i 個人拿了自己帽子 12n 12...

Example 10 A i 表第 i 個人拿了自己帽子

Example 10 A i 表第 i 個人拿了自己帽子

Example 10 A i 表第 i 個人拿了自己帽子

Example 10 A i 表第 i 個人拿了自己帽子

Example 10 A i 表第個人拿了自己帽子

Example 10

... k matches n  k mis matches 

Example 10

Remark

Chapter 2 Combinatorial Analysis Calculus

Some Important Derivatives Derivatives for multiplications — Derivatives for divisions — Chain rule —

L’Hopital rule

Examples

Integration by Part

The Gamma Function

Example 12

0  (   1)

Example 12